2020 (3) 5

https://doi.org/10.15407/polymerj.42.03.199
GUANIDINCONTAINING OLIGOMERIC POTONIC CATIONIC IONIC LIQUIDS

M.Ya. Vortman,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
E-mail: vmar1962@i.ua
ORCID: 0000-0003-0092-6009
V.N. Lemeshko,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
E-mail: vlem1308@gmail.com
ORCID: 0000-0003-1916-2301
V.V. Shevchenko,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
E-mail: valshevchenko@yandex.ru
ORCID: 0000-0003-2100-4468
Polym. J., 2020, 42, no. 3: 199-208.
Section: Structure and properties.
Language: Russian.

Abstract:

A method has been developed for the synthesis of reactive guanidinium-containing oligomeric proton cationic ionic liquids with various counterions in their composition by the interaction of oligomeric hydroxyalkyl aromatic diepoxide with guanidine, followed by neutralization of the product with inorganic and organic acids. Their structure is characterized by the presence of hydrophilic hydroxyl-containing guanidinium ionic groups at the ends of the hydrophobic alkylaromatic oligoether chain. These compounds were characterized by IR, 1H and 13C NMR spectroscopy, and molecular weight characteristics were determined. The effect of the counterion on the thermophysical, transport, and surface-active properties of the obtained oligomeric ionic liquids was studied. These compounds are characterized by a two-phase amorphous structure with two glass transition temperatures. The first lies in the range of -35 – -52 °C, the second in the range of 40–70 °C, and the nature of the change in these quantities depends on the chemical nature of the anion and its size. The same characteristics determine the onset of thermo-oxidative degradation, which lies in the region of 143–255 °C. The proton conductivity of guanidinium-containing oligomeric proton cationic ionic liquids with inorganic anions is about an order of magnitude higher than with organic and reaches 1,94·10-3 S/cm at 120 °C. For these oligomers, the nature of the anion practically does not affect the value of the limiting surface activity (~ 102 Nm2/kmol) and the critical micelle formation concentration (~ 10-2 mol/l), but determines the minimum surface tension of aqueous solutions (37,0–44,3 mN/m). The synthesized compounds are of interest as electrolytes operating under anhydrous conditions, fungicides, surfactants, as well as starting reagents for the synthesis of ion-containing block copolymers.
Key words: guanidine, ionic liquids, guanidinium ionic liquids, oligomeric ionic liquids, structure, ionic conductivity, surface activity.

REFERENCES

1. Hallett J.P., Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev. 2011, 111, no. 5: 3508–3576. https://doi.org/10.1021/cr1003248.
2. Greaves T.L., Drummond C.J. Protic ionic liquids: properties and applications. Chem Rev. 2008, 108, no. 1: 206–237. https://doi.org/10.1021/cr068040u.
3. Bideau J., Viau L., Vioux A. Ionogels, ionic liquid based hybrid materials . Chem. Soc. Rev. 2011, 40, no. 2 : 907–925. https://doi.org/10.1039/C0CS00059K.
4. Voinczeva I.I., Gembiczkij P.A. Poliguanidiny – dezinfekczionnye sredstva i polifunkczional’nye dobavki v kompoziczionnye materialy. Moskva. Lakokrasochnaya promyshlennost’, 2009: 300.
5. Bogdanov G., Petkova D., Hristeva S., Svinyarov I., Kantlehner W. New Guanidinium-based Room–temperature Ionic Liquids. Substituent and Anion Effect on Density and Solubility in Water. Z.Naturfosch. 2010, 65: 37–48. https://doi.org/10.1515/znb-2010-0108.
6. Zhao Z., Ueno K., Angell C. High Conductivity and Dry Proton Motion in Guanidinium Salt Melts and Binary Solutions. J. Phys. Chem. 2011, no. 9: 54–59.
7. Tanaka M., Siehl H., Viefhaus T., Frey W., Kantlehner W. An Onion Study of a Guanidinium Salt Ionic Liquid. Experimentaly and Computational Characterization of N,N,N/,N/,N// – Pentabutyl -N//- benzylguanidinium Bromide. Z. Naturfosch, 2009, 64b: 765–772. https://doi.org/10.1515/znb-2009-0624.
8. Zhang P., Liu Y., Fan M., Jiang P. Catalytic performance of a novel amphiphilic alkaline ionic liquid for biodiesel production: Influence of basicity and conductivity Renewable Energy. 2016, 86: 99–105. https://doi.org/10.1016/j.renene.2015.08.008.
9. Zhang C., Ying Z., Luo Q. Poly(hexamethylene guanidine)-Based Hydrogels With Long Lasting Antimicrobial Activity and Low Toxicity. J. Polym. Sci.-2017 , Part A: Polym. Chem., 55, no. 12: 2027–2035. https://doi.org/10.1002/pola.28581.
10. Shevchenko V.V., Stryutsky A.V., Klymenko N.S. Protic and aprotic anionic oligomeric ionic liquids. Polymer. 2014, 55, no. 16: 3349–3359. https://doi.org/10.1016/j.polymer.2014.04.020.
11. Shevchenko. V.V., Stryutsky A.V., Klymenko N.S. Protic cationic oligomeric ionic liquids of the urethane type. Polym. Sci. Ser. B. 2014, 56: 583–592. https://doi.org/10.1134/S156009041405011X.
12. Shevchenko. V.V., Stryutsky A.V., Klymenko N.S. Reactive Oligomeric Protic Cationic Linear Ionic Liquids with Different Types of Nitrogen Centers. Polym. Sci. Ser. B. 2018, 60: 598–611. https://doi.org/10.1134/S1560090418050160.
13. Shevchenko. V.V., Stryutsky A.V., Sobko O.A. Amphiphilic protic anionic oligomeric ionic liquids of hyperbranched structure . Polym. Sci. Ser. B. 2017, 59: 379–391. https://doi.org/10.1134/S1560090417040108.
14. Vortman M.Ya., Lemeshko V.N., Shevchenko V.V. Guanidinijsoderzhashhaya oligomernaya kationnaya protonnaya ionnaya zhidkost’. Dopovidi NAN Ukrayini. 2019, no. 12: 75–82. https://doi.org/10.15407/dopovidi2019.12.075.
15. Greaves T., Drummond C. Protic Ionic Liquids: Evolving Structure−Property Relationships and Expanding Applications, Supporting Information. Chem. Rev. 2015, 115, no. 20: 11379–11448. https://doi.org/10.1021/acs.chemrev.5b00158.
16. Kadar E.P., Wujcik C.E., Wolford D.P. Rapid determination of the applicability of hydrophilic interaction chromatography utilizing ACD Labs Log D Suite: A bioanalytical application. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2008, 863: 1−8. https://doi.org/10.1016/j.jchromb.2007.11.036.
17. Gray F.M. Solid Polymer Electrolytes: Fundamentals and Technological Applications. New York: VCH Publishers, Inc., 1991: 245.
18. Li J., Bu F., Ru C, Jiang H. Enhancing the selectivity of Nafion membrane by incorporating a novel functional skeleton molecule to improve the performance of direct methanol fuel cells J. Mater. Chem. A. 2020, no. 8: 196–206. https://doi.org/10.1039/C9TA10215A.
19. Shevchenko V.V., Gumennaya M.A., Stryutsky A.V., Klimenko N.S., Trachevskii V.V., Klepko V.V., Davidenko V.V. Reactive Oligomeric Protic Cationic Linear Ionic Liquids with Different Types of Nitrogen Centers. Polym. Sci. Ser. B. 2018, 60, no. 5: 380–393. https://doi.org/10.1134/S1560090418050160.
20. Abramzon A.A., Bocharov V.V. Poverkhnostno-aktivnye veshhestva. Spravochnik. Pod red. Abramzona A. A. i Gaevogo G. M. L.: Khimiya, 1979: 376.
21. Avinoviczkaya M.Ya., Matyushov V.F., Magdinecz V.V. Svojstva blochny`kh oligomerov na osnove nizkomolekulyarnogo kauchuka i oligodiepoksidov . Vysokomolek. Soedin. Ser.V. 1987, 29, no. 11: 812–816.