2020 (3) 6
https://doi.org/10.15407/polymerj.42.03.209
GUANIDINCONTAINING OLIGOMERIC CATIONIC POTONIC IONIC LIQUIDS WITH BIOCIDE ACTIVITY
M.Ya. Vortman,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
E-mail: vmar1962@i.ua
ORCID: 0000-0003-0092-6009
I.M. Furtat,
National University of Kyiv-Mohyla Academy, 2, Grygoriya Skovorody str, Kyiv, 04655, Ukraine
P.V. Vakuliuk,
National University of Kyiv-Mohyla Academy, 2, Grygoriya Skovorody str, Kyiv, 04655, Ukraine
V.N. Lemeshko,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
E-mail: vlem1308@gmail.com
ORCID: 0000-0003-1916-2301
V.V. Shevchenko,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
E-mail: valshevchenko@yandex.ru
ORCID: 0000-0003-2100-4468
Polym. J., 2020, 42, no. 3: 209-217.
Section: Structure and properties.
Language: Russian.
Abstract:
The bactericidal properties of guanidinium-containing oligomeric ionic liquids (OIL) with various counterions in their composition such as chloride, phosphate and formiate have been studied in relation to a number of gram-positive (Micrococcus luteus CCM 169, Corynebacterium ammoniagenes УКМ Ас-732, Сorynebacterium variable УКМ Ас-717, Rhodococcus erythropolis УКМ Ас-741, Staphylococcus aureus CCM 209, Bacillus cereus, Bacillus subtilis CCM 104, Bacillus megaterium ССМ 52) and gram-negative (Enterobacter cloaceas, Serratia marcescens CCM 1257, Escherichia coli, Escherichia coli BE, Escherichia coli HB 101, Pseudomonas aeruginosa CCM 1961, Proteus vulgaris CCM 72, Proteus vulgaris CCM 72, Klebsiella pneumoniae) bacteria, depending on the nature of the counterion. The effect of the counterion on the bactericidal properties of the obtained OIL was studied. The minimum inhibitory concentration of guanidinium-containing oligomeric ionic liquids with various counter-ions with respect to the studied bacterial strains was determined. It has been shown that the highest bactericidal activity and, accordingly, the lowest minimum inhibitory concentration in relation to the studied gram-positive and gram-negative bacteria are possessed by the OIL with chloride ion. A comparative assessment of the bactericidal activity of the studied OIL with the known polyhexamethylene guanidinium chloride, which enjoys the greatest practical demand in terms of biocidal properties, was carried out. The minimum inhibitory concentration for GOIL with chloride ion in relation to most of the bacteria studied is 10 ppm, that is, higher than for chlorhexidine and PHMG and the bactericidal activity is respectively lower. The advantages of the GOIL include the low-temperature synthesis and the presence of functional groups capable of further transformations. The obtained reactive guanidinium OIL, by analogy with PHMG, can be recommended as substances with biocidal, fungicidal properties, the starting component for the production of various polymers and composite materials based on them.
Keywords: guanidinium, ionic liquids, guanidinium ionic liquids, oligomeric ionic liquids, bactericides.
REFERENCES
1. Voinczeva I.I., Gembiczkij P.A. Poliguanidiny – dezinfekczionnye sredstva i polifunkczional’nye dobavki v kompoziczionnye materialy. Moskva. Lakokrasochnaya promyshlennost’, 2009: 300.
2. Voinczeva I.I. Poligeksametilenguanidingidrokhlorid dlya ochistki i obezzarazhivaniya vody kak al’ternativa reagentam-okislitelyam. Chast’ 1 Voda: khimiya i ekologiya 2011, no. 7: 39–45.
3. Kitamaki R., Shirai K., Sugino K. Preparation and Properties of Polyhexamethyleneguanidine. Bull. Chem. Soc. Japan. 1968, no. 41: 1461–1463. https://doi.org/10.1246/bcsj.41.1461.
4. Gembiczkij P.A., Koryavov Ya.I., Erusalimskij P.M. O sinteze poli(alkilenguanidinov) i poli(alkilenbiguanidinov). Zhurnal prikladnoj khimii. 1975, 48: 1933–1939.
5. Kim H.-R., Hwang G.-W., Naganuma A. Adverse health effects of humidifier disinfectants in Korea: lung toxicity of polyhexamethylene guanidine phosphate J. Toxicolog.l Sci. 2016, 41, no. 6: 711–717. https://doi.org/10.2131/jts.41.711.
6. Park Y., Jeong M., Bang J. Guanidine-based disinfectants, polyhexamethylene guanidine-phosphate (PHMG-P), polyhexamethylene biguanide (PHMB), and oligo(2-(2-ethoxy)ethoxyethyl guanidinium chloride (PGH) induced epithelial-mesenchymal transition in A549 alveolar epithelial cells. Inhalation Toxicology 2019, 31, no. 4 :161–166. https://doi.org/10.1080/08958378.2019.1624896.
7. Vitt A., Sofrata A., Slizen V. Antimicrobial activity of polyhexamethylene guanidine phosphate in comparison to chlorhexidine using the quantitative suspension method Annals of Clinical Microbiology and Antimicrobials. 2015, 14: Article number: 36. https://doi.org/10.1186/s12941-015-0097-x.
8. An C.K., Grammatikova N.E., Vasilenko I.A. Comparative in vitro Antibacterial Activity of Polyhexamethylene Guanidine Hydrochloride and Polyhexamethylene Guanidine Succinate. Antibiotics and chemotherapy. 2013, 58: 1–2.
9. Vakulyuk P.V., Vortman M.Ya., Furtat I.M., Burban A.F. Trekovi polietilentereftalatni membrani z antibakterial’nimi vlastivostyami. Polimern. zhurn. 2008, 30, no. 1: 46–51.
10. Gorobecz’ A.V., Vakulyuk P.V., Furtat I.M., Vortman M.Ya. Baktericzidni fluorovmisni membrani, sformovani v prisutnosti guanidinijvmisnikh niz’komolekulyarnikh polimeriv. Naukovi zapiski. Khimichni nauki i tekhnologiyi, 2009, 92: 48–52.
11. Gerba C. Quaternary Ammonium Biocides: Efficacy in Application. Appl. Env. Microb. 2015, 81, no. 2: 363–469. https://doi.org/10.1128/AEM.02633-14.
12. Xue Y., Xiao H., Zhang Y. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. Int. J. Mol. Sci., 2015, 16: 3626–3655. https://doi.org/10.3390/ijms16023626.
13. Davies A., Bentley M., Field B. Comparison of the Action of Vantocil, Cetrimide and Chlorhexidine on Escherichia coli and its Spheroplasts and the Protoplasts of Gram Positive Bacteria. J. Appl. Bact. 1968, 31: 448–461. https://doi.org/10.1111/j.1365-2672.1968.tb00394.x.
14. Gerasimov V.N., Lushhikov S.B., Babich I.V., Gaevskaya G.V. Mikrobiologicheskie, biofizicheskie i biokhimicheskie issledovaniya mekhanizma dejstviya dezinfektanta «metaczid» na bakterii. Dezinfekczionnoe delo. 1998, no. 2: 19–24.
15. Vortman M.Ya., Lemeshko V.N., Shevchenko V.V. Guanidinijsoderzhashhaya oligomernaya kationnaya protonnaya ionnaya zhidkost’ Dopovidi NAN Ukrainy, 2019, no. 12: 75–82. https://doi.org/10.15407/dopovidi2019.12.075.
16. Gould J. Quantity and Qualityin the Diagnosis of UrinaryTract Infections. https://doi.org/10.1111/j.1464-410X.1965.tb09567.x.
17. Brian L.E. Bakterial’naya rezistentnost’ i chuvstvitel’nost’ k khimiopreparatam / Per. s angl. Ivlevoj A. Ya. Moskva: Mediczina, 1984: 270.
18. Furtat I.M., Niv’yevs’ka T.V., Gorbat’ko L.O., Mikhal’s’kij L.O. Dezinfikuyucha diya perekisu vodnyu ta lizoforminu na gramnegativni bakteriyi, yaki kontaminuyut’ virobnicztva kharchovoyi promislovosti Magisterium. Prirodnichi nauki (Naczional’nij universitet “Kiyevo-Mogilyans’ka akademiya”). K.: Vidavnichij dim “KM Academia”, 2004, 16: 29–35. http://ekmair.ukma.edu.ua/handle/123456789/14117.
19. Oule M., Azinwi R., Bernier A. Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. J. of Med. Microbiol. 2008, 57: 1523–1528. https://doi.org/10.1099/jmm.0.2008/003350-0.
20. Koffi-Nevry R., Manizan A., Tano K. Assessment of the antifungal activities of polyhexamethylene-guanidine hydrochloride (PHMGH)-based disinfectant against fungi isolated from papaya (Carica papaya L.) fruit. African J. Microbiol. Res. 2011, 5, no. 24: 4162–4169. https://doi.org/10.5897/AJMR11.608.
21. Kim B., Anderson J., Mueller S. Efficacy of various disinfectants against Legionella in water systems. Water Research 2002, 36: 4433–4444. https://doi.org/10.1016/S0043-1354(02)00188-4.
22. Prasanthi K., Murty D., Saxena N. Evaluation of Antimicrobial Activity of Surface Disinfectants by Quantitative Suspension Method, International. J. Res. Biolog. Sci. 2012, 2, no. 3: 124–127.
23. Jayakumar S., Kanagavalli M., Banu S., et.al. Disinfectants Against Nosocomial Pathogens. J. Clinic.l and Diagn. Res. 2011, 5, no. 2: 231–235.
24. Dafu Wei, Qiangxiang Ma, Yong Guan , et.al. Structural characterization and antibacterial activity of oligoguanidine (polyhexamethylene guanidine hydrochloride). Mater. Sci Engin. C 2009, 29: 1776–1780. https://doi.org/10.1016/j.msec.2009.02.005.