2020 (4) 3
https://doi.org/10.15407/polymerj.42.04.262
STUDY THE STRUCTURE AND THERMAL PROPERTIES OF CARBOXYMETHYLATED-β-CYCLODEXTRIN INCLUSION COMPLEX WITH BIFONAZOLE
L. Kobrina,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
ORCID: 0000-0001-6801-0801
e-mail: kobrina.larisa@gmail.com
S. Sinelnikov,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
V. Shtompel,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
E-mail: vishtomp@bigmir.net
D. Bandurina,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
ORCID: 0000-0003-1535-2888
S. Riabov,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
ORCID: 0000-0001-9430-7270
E-mail: sergii.riabov@gmail.com
Polym. J., 2020, 42, no. 4: 262-268.
Section: Structure and properties.
Language: Ukrainian.
Abstract:
Recently, many technological methods of enhancing the solubility and dissolution characteristics of poorly water soluble drugs have been reported in the literature. Сyclodextrins are able to form water-soluble non-covalent inclusion complexes with many poorly soluble lipophilic drugs. The purpose of this study is to evaluate the possibility of interaction of the antifungal drug Bifonazole (BFZ) through complexation with carboxymethylated-β-cyclodextrin (КМ-β-CD). Based on the data obtained, we can conclude that the presence of KM-β-CD improves solubilization of BFZ more than 50 times.
Кеуwords: cyclodextrins, solubility, poorly-water soluble drugs, bifonazole.
REFERENCES
1. Al-Marzouqia A.H., Elwya H.M., Shehadib I., Ademc A. Physicochemical properties of antifungal drug–cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. Journal of Pharmaceutical and Biomedical Analysis. 2009; 49, no.2: 227–233. https://doi.org/10.1016/j.jpba.2008.10.032
2. Strickley R.G. Solubilizing excipients in oral and injectable formula-tions. Pharmaceutical research. 2004; 21, no. 2: 201–230. DOI10.1023/B:PHAM.0000016235.32639.23
3. Loftsson T., Masson M., Brewster M.E. Self-association of cyclodextrins and cyclodextrin complexes. Journal of pharmaceutical sciences. 2004; 93, no 5: 1091–1099. https://doi.org/10.1002/jps.20047
4. Lackner T.E., Clissold S.P. Bifonazole. A Review of its antimicrobial activity and therapeutic use in superficial mycoses. Drugs. 1989, 38, no. 2: 204–225. DOI: 10.2165/00003495-198938020-00004
5. Berg D., Büchel K.H., Plempel M., Regel E. Antimy-cotic sterol biosynthesis inhibitors. Trends in Pharmacology Sciences. 1986, 17: 233–238. https://doi.org/10.1016/0165-6147(86)90330-5
6. Petri H., Tronnier H., Haas P. Investigations into the anti-inflammatory effect of bifonazole. In: Hay R. J. (ed.). Advances in Topical Antifungal Therapy, Springer Verlag. Berlin, 1986: 26–31. https://doi.org/10.1007/978-3-642-71717-8
7. Hegemann L., Toso S.M., Lahijani K.I., Webster G.F., Ditto J. Direct interaction of antifungal azole-derivatives with calmodulin: a possible mechanism for their therapeutic activity. Journal of Investigative Dermatology. 1993, 100, no. 3: 343–346. https://doi.org/10.1111/1523-1747.ep12470043
8. Kelemen H., Csillag A., Hancu G., Székely-Szentmiklósi B., Fülöp I., Varga E., Grama L., Orgován G. Characterization of inclusion complexes between bifonazole and different cyclodextrins in solid and solution state. J. Chem. Chem. Eng. 2017, 36, no. 1: 81–95. DOI: 10.20450/mjcce.2017.1031
9. Morin N., Guillaume Y.C., Peyrin E., Rouland J.-C. Peculiarities of an imidazole derivative retention mechanism in reversed-phase liquid chromatography: β-cyclodextrin concentration and temperature considerations. Journal of Chromatography A. 1998, 808, no. 1-2: 51–60. https://doi.org/10.1021/ac980194p
10. Castro‐Puyana M., Crego, A. L. Marina, M. L., García‐Ruiz C. Enantioselective separation of azole compounds by EKC. Reversal of migration order of enantiomers with CD concentration. Electrophoresis. 2007, 28, no. 15: 2667–2674. DOI 10.1002/elps.200600798
11. Trandafirescu C., Gyeresi, A. Szabadai Z., Kata M. Solid-state characterization of bifonazole-betacyclodextrinbinary systems. Note I. Farmacia, 2014, 62, no. 3: 513–523.
12. Morin N., Chilouet A., Millet, J. Rouland J.-C. Bifonazole-β-cyclodextrin Inclusion Complexes. Thermal analysis and X-ray powder diffraction study. Journal of thermal analysis and calorimetry. 2000, 62, no. 1: 187–201. https://doi.org/10.1023/A:1010127231416
13. Normatyvno-dyrektyvni dokumenty MOZ Ukrainy http://mozdocs.kiev.ua
14. Kobrina L.V., Boyko V.V., Riabov S.V., Sinelnikov S.I., Bandurina D.Yu., Moscalenko O.V. Investigation of the inclusion complexes of carboxymethelated β-Cyclodextrin with Phenoxatiin. Polymer journal. 2019, 41, no. 3: 107–110.
15. Higuchi Т., Connors K.A Phase-solubility techniques. Adv. Anal.- Chem. Instrum.1965, 4: 117–212.
16. Másson M., Vigdís B. Sigurdardóttir, Kristján Matthíasson Investigation of Drug–Cyclodextrin Complexes by a Phase-Distribution Method: Some Theoretical and Practical Considerations. Chem. Pharm. Bull. 2005, 53, no. 8: 958–964. https://doi.org/10.1248/cpb.53.958