2021 (1) 7

https://doi.org/10.15407/polymerj.43.01.054
INFLUENCE OF THE MODEL ENVIRONMENT ON THE STRUCTURE AND PROPERTIES OF COMPOSITE MATERIALS WITH DOXORUBICIN BASED ON POLYURETHANES WITH ISOCYANURATE FRAGMENTS
G.A. KOZLOVA,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shosse, Kyiv, 02160, Ukraine,
e-mail: politoks@merlin.net.ua
ORCID: 0000-0001-8114-4812
R.A. ROZHNOVA,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shosse, Kyiv, 02160, Ukraine,
e-mail:rozhnovaria@gmail.com
ORCID: 0000-0003-3284-3435
L.YU. NECHAEVA,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shosse, Kyiv, 02160, Ukraine,
e-mail: l.ne4aeva@gmail.com
ORCID: 0000-0002-9715-5986
N.A. GALATENKO,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shosse, Kyiv, 02160, Ukraine,
e-mail: politoks@merlin.net.ua
ORCID: 0000-0002-5961-5750
S.O. PRIMUSHKO,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shosse, Kyiv, 02160, Ukraine,
e-mail: nork345@gmail.com
ORCID: 0000-0001-9430-7270
Polym. J., 2021, 43, no. 1: 54-63.

Section: Medical polymers.

Language: Ukrainian.

Abstract:

The influence of the BM 199 model environment on the structure and properties of composite materials with Doxorubicin based on polyurethanes (PU) with isocyanurate branching nodes, in which the content of 2,4,6-triisocyanate(trishexamethylene)isocyanurate (HDT-90) was 0.25.0 , 5, 0.75 mol, and the content of the drug Doxorubicin is 0.5% wt. It was found that the obtained materials exhibit the ability to biodegradation in vitro. In a study by IR spectroscopy of changes in the structure of polyurethane composites with Doxorubicin under the influence of BM 199, it was found that, in the series of polyurethanes, with an increase in the residence time in the model environment, a decrease in the number of weakly bound (νNH 3516 cm-1) and strongly bound bonds of NH groups ( νNH 3515 cm-1), which can occur both due to the biodegradation of the polymer base, and as a result of the release of Doxorubicin. For all the samples under study, during their stay in the biological medium, there is a decrease in the strength at break by 1.5-1.9 times and an increase in the relative elongation by 1.1-1.4 times. According to the data of physical-mechanical tests for all studied materials, the process of biodegradation in vitro is accompanied by an increase in elasticity during the entire study period. According to the results of the study of the dynamics release of Doxorubicin, it was found that from polyurethane composites with isocyanurate branching nodes containing 0.75 mol of HDT-90 in the structure, Doxorubicin is released within 21 days in an amount of 17.6%, which is 4 times more than for samples compositions with 0.5 mole of HDT-90, from which 4.4% of Doxorubicin is released, which may be related to the packing density of the macrochain of the polymer base. Composite materials based on polyurethanes with izocyanurate fragments and Doxorubicin can be proponated for medical and biological tests as material for stem implantation of tissue with prolong medicinal action.

Key words: biodegradation, polyurethanes (PU), isocyanurates, Doxorubicin (DOX), drug release.

 

REFERENCES
1. Mashkovskiy M.D. Lekarstvennyie sredstva, Moskva, 2002, 2.
2. Filatova E.V., Bonarczev P.A., Bonarczeva G.A. Malotoksichnye mikrosfery dlya napravlennoj dostavki doksorubiczina. EFFEKTIVNAYa FARMAKOTERAPIYa. Onkologiya, gematologiya i radiologiya : 2018, 1, no. 5: 30–34.
3. Shishaczkaya E.I., Goreva A.V., Kuz`mina A.M. Issledovanie lekarstvennoj yeffektivnosti doksorubiczina, deponirovannogo v mikrochasticzy iz rezorbiruemogo «BIOPLASTOTANA™», na laboratornykh zhivotnykh s solidnoj formoj karczinomy. Erlikha. Byulleten` eksperimental`noj biologii i medicziny, 2012, no. 12: 741–745.
4. Rusetskaya N.V., Khariton N., Yurchenko O.V., ChekhunV.F. Distribution and accumulation of liposomal form of Doxorubicin in brest cancer cells of MCF-7 line. Chekhun. Exp Oncol, 2011, 33, no. 2: 78–82.
5. Greco F., Vicent M.J., Gee S. et. al. Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer0Dox-AGM in breast cancer cells. Control release, 2007, 117: 28–39. https://doi.org/10.1016/j.jconrel.2006.10.012.
6. Pola R., Pechar M., Ulbrich K. Polymer-Doxorubicin conjugate with a synthetic peptide ligand targered on prostate tumor. Bioactive and Compatible Polymers, 2007, 22, 602–620. https://doi.org/10.1177/0883911507084423.
7. Chytry V., Ulbrich K. Conjugate of Doxorubicin with a Thermosensitive Polymer Drug Carrier. Bioactive and Compatible Polymers, 2001, 16: 427–440. https://doi.org/10.1106/FDUM-1LXE-WGJ9-BYVW.
8. Zubareva A.A. Razrabotka sistem dostavki biologicheski aktivnyh veschestv na osnove nanochastic hitozana i ego proizvodnyh. Avtoreferat dissertacii na soiskanie uchenoy stepeni kandidata himicheskih nauk. Moskva, 2013.
9. Rudenchyk T., Rozhnova R. Galatenko N.. Hydrophylic Polyurethaneurea Containing the Copolymer of N-vinylpyrrolidone, Vinyl Acetate and Vinyl Alcohol for Possible Biomedical Use. Advances in Biochemistry, 2017, 5, no. 4: 73–78, doi: 10.11648/j.ab.20170504.14.
10. Rudenchyk T.V., Rozhnova R.A., Galatenko N.A., Kiselova T.O. Hydrophilic polyurethane ureas with cycloserine which contain in their structure the fragments of a copolymer of N-vinylpyrrolidone with vinyl alcohol: Synthesis and characterization. Voprosy Khimii i Khimicheskoi Tekhnologii, 2017, 5: 49–57.
11. Stashenko K.V., Rudenchyk T.V., Rozhnova R.A., Kiselova T.O. Development of composite materials based on polyurethane urea with fragments of a copolymer of N-vinylpyrrolidone with vinyl alcohol and lysozyme. Voprosy Khimii i Khimicheskoi Tekhnologii, 2018, 2: 115–121.
12. Karpenko O.S., Galartenko N. A., Kiseleva T. A., Narazhayko L.F. Synthesis of new polyurethane foams for medical use. Polym. J., 2018, 40, no. 1: 51–57, DOI: 10.15407/polymerj.40.01.051.
13. Galatenko N.A., Rozhnova R.A., Kulyk L.V., Kulyesh D.V., The evaluation of biocompatibility and biological activity of composite materials with folate-derivative of ferrocene for medicine, Fizika ta Tehnologia Poverhni, 2016, 7, no. 3: 344–353. https://doi.org/10.15407/hftp07.03.344.
14. Kulyk L., Gladir I., Rozhnova R., Kuliesh D., Galatenko N., Narazhaiko L. Preparation and Research of Hydrophilic Polyurethane Modified by Folate-LactoseAmerican Journal of Polymer Science and Technology, 2019, 5(2): 63–72. https://doi.org/10.11648/j.ajpst.20190502.14.
15. Rozhnova R., Kebuladze I., Galatenko N. Bioactive polyurethane implants with hydroxyapatite. Key Engineering Materials. 2001: 192–195, 693–696. DOI: 10.4028/www.scientific.net/kem.192-195:693.
16. Rozhnova R., Bondarchuk V., Savitskaia E., Levenets E., Popov V., Galatenko N. Replacement of bone defects with a polyurethane composition with hydroxyapatite high-filling. Likars’ka sprava. Ministerstvo okhorony zdorov’ia Ukrainy. 2002, 1: 107–110, EID: 2-s2.0-17444437883.
17. Lebedev Ye.V., Galatenko N.A., Rozhnova R.A., Kulesh D.V. Serial Production of Domestic Biologically Active Glue for Medical Purposes. Science and innovation. 2016, 12, no. 1: 54–57. http://doi.org/10.15407/scine12.01.054.
18. Galatenko N.A., Rozhnova R.A. Biologically active polymeric materials for medicine, Kiyv: Naukova dumka, 2013: ISBN 878-966-00-1265-3.
19. Zhigoczkij A.G., Danilova G.P., Shkaranda I.T. Poluchenie i izuchenie svojstv plenok na osnove sshity`kh poliuretanov. Izv. vy`sshikh ucheb. zavedenij. Tekhnol. legkoj promy`shlennosti, 1979, no. 3: 37– 42.
20. Gorbatenko V.I. Izocianaty. Metody sinteza i fiziko-himicheskie svoystva alkil-, aril, i geterilizocianatov. K.: Naukova dumka, 1987: 444.
21. Kozlova T.B., Letunovskiy M.P., Jarkov B.B. Influence of chemical cross-linking to the hydrogen bonds in the urethane block copolymers. Vysokomol. Soed. A. 1983, 25, no. 9: 1929–1933. https://doi.org/10.1016/0032-3950(83)90422-7.
22. Lukashevich S. A., Rozhnova R. A., Galatenko N. A., Kozlova G. A. Development of method for synthesis of polyurethanes branched structure containing isocyanurate fragments in macrochain. Study their structure and properties. Odesa National University Herald. Chemistry. 2016, 21, no. 4(60): 48–56. DOI: 10.18524/2304-0947.2016.4(60).83667.
23. Lukashevich S.A. Rozhnova R.A., Kozlova G.A., Nechaeva L.Yu. Kompozytsiini materialy na osnovi izotsianuratvmisnoho poliuretanu z prolonhovanym vyvilnenniam doksorubitsynu. Polymer Journal (Ukr), 2019, 41, no 2: 271–277. https://doi/org/10.15407/polymerj.41.04.271.
24. Lukashevich S.A., Kozlova G.A. Polyurethanes synthesized on the basis of di- and polyisocyanate filled with doxorubicin: a study of the structure and properties. Polym. J. (Ukr), 2019, 41, no. 1: 263–269. https://doi.org/10.15407/polymerj.41.01.058.
25. Malanchuk V.O., Astapenko O.O., Halatenko N.A., Rozhnova R.A. The research of biodegradation of a composite material used in reconstructive and reparative surgery of maxillofacial area. Likars’ka sprava. Ministerstvo okhorony zdorov’ia Ukraïny, 2013, 6: 83–88.
26. Rudenchyk T.V., Rozhnova R.A., Galatenko N.A., Nechaeva L.Y. The effects of the model biological medium on the structure and properties of composite materials with levamisole and the dynamics of the release of a drug substance. Voprosy Khimii i Khimicheskoi Tekhnologii, 2018, 5: 140–148.
27. Nechayeva Yu.L., Galatenko N.A., Bufius N.N. Extraction spectrophotometric determination of levamisol yield from polymer-based long-acting drug. Farmatsiya, 1989, 38, 2: 24–27.
28. Grigorieva M., Gladir I., Galatenko N. The Polyurethane-Drug Composites: Synthesis, Properties and a Kinetic Model. Journal of Bioactive and Compatible polymers, 2001, 16, 14: 307–314. https://doi.org/10.1106/FXUM-170B-VHHW-89HX.
29. Prech E., Byulmann F., Affolter K. Opredelenie stroeniya organicheskih soedineniy. M.: Mir; BINOM. Laboratoriya znaniy, 2006: 55.