2021 (2) 2
https://doi.org/10.15407/polymerj.43.02.079
FORMATION OF NICKEL NANOPARTICLES IN SOLUTIONS OF A HYDROPHILIC GRAFT COPOLYMER
Т.B. ZHELTONOZHSKAYA,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0001-5272-4244
e-mail: zheltonozhskaya@ukr.net
N.М. PERMYAKOVA,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0002-7622-1059
e-mail: permyakova@ukr.net
A.S. FOMENKO,
Taras Shevchenko National University of Kyiv, 60, Volodimirska str., Kyiv, 01033, Ukraine
L.R. KUNITSKAYA,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0001-7027-0231
V.V. KLEPKO,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0001-8089-8305
L.М. GRISHCHENKO,
Taras Shevchenko National University of Kyiv, 60, Volodimirska str., Kyiv, 01033, Ukraine,
ORCID: 0000-0002-0342-4859
D.О. KLYMCHUK,
M.G. Kholodniy Institute of Botany NAS of Ukraine, 2, Tereshchenkivska str., Kyiv, 01601, Ukraine,
ORCID: 0000-0002-7076-8213
Polym. J., 2021, 43, no. 2: 79-94.
Section: Structure and properties.
Language: English.
Abstract:
A graft copolymer of poly(vinyl alcohol) and polyacrylamide (PVA-g-PAAm) with interacting main and grafted chains was synthesized by radical matrix polymerization of PAAm from the PVA backbone in an aqueous medium. Its basic molecular parameters including the number and length (molecular weight) of grafts were determined using elemental analysis, DTGA and viscometry. The copolymer macromolecules formed special monomolecular micelles of elipsoidal shape and length ~18-64 nm in aqueous solutions due to the formation of intramolecular polycomplexes between the main and grafted chains. This copolymer was used as a hydrophilic matrix for the in situ synthesis of nickel nanoparticles (NiNPs) in aqueous solutions.On the basis of UV-Vis spectroscopy, an original and simple method for monitoring the kinetics of the formation and yield of metal nanoparticles in systems in which a surface plasmon resonance band does not appear has been proposed and implemented. Using this approach, the kinetics of borohydride reduction of Ni-salt to NiNPs in pure water and PVA-g-PAAm solutions was studied depending on the concentrations of Ni-salt and copolymer matrices. An increase in the initial rate of accumulation and yield of NiNPs with an increase in the concentration of Ni-salt and a decrease in both parameters in copolymer solutions in comparison with pure water was established. At the same time, the accumulation rate and NiNP yield in a complex way was depended on the matrix concentration that was determined by the ratio of such factors as a decrease in the diffusion rate of NaBH4 molecules in copolymer solutions and the accumulation of Ni2+-ions in matrix particles due to complexation with active chemical groups at the first stage of reduction process.
The morphology and main structural elements of the NiNPs/PVA-g-PAAm composition were revealed using TEM. It was shown that the in situ synthesis of NiNPs in copolymer matrices was accompanied by the “detachment” of PAAm grafts from the main PVA chains and led to the appearance of two new structures, such as “hairy coils” and “hairy rods”, containing small spherical NiNPs (d~0,5–12,0 nm) in isolated and chain states, respectively. The appearance of the latter structures was explained by the formation of coordination complexes of Ni2+-ions with active groups of both PVA and PAAm chains at the first stage of the reduction reaction.
Key words: graft copolymer, nickel nanoparticles, reduction process, kinetics, morphology..
REFERENCES:
1. Alonso F., Riente P., Yus M. Hydrogen-transfer reduction of carbonyl compounds promoted by nickel nanoparticles. Tetrahedron, 2008, 64: 1847–1852. https://doi.org/10.1016/j.tet.2007.11.093.
2. Abbas S.A., Ma A., Seo D., Lim Y.J., Jung K.-D., Nam K.M. Application of spiky nickel nanoparticles to hydrogen evolution reaction. Bull. Korean Chem. Soc., 2020 (6 pp.). DOI: 10.1002/bkcs.12113.
3. Metin Ö., Mazumder V., Özkar S., Sun S. Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc., 2010, 132: 1468–1469. https://doi.org/10.1021/ja909243z.
4. Zhiani M., Kamali S. Preparation and evaluation of nickel nanoparticles supported on the polyvinylpyrrolidone-graphene composite as a durable electrocatalist for HER in alkaline media. Electrocatalysis, 2016, 7: 466–476. https://doi.org/10.1007/s12678-016-0330-1.
5. Vekas L., Avdeev M.V., Bica D. Magnetic nanofluids: synthesis and structure. In: Nanoscience in Biomedicine, Shi, D. (Ed.), Chapter 25, Springer-Verlag: Berlin, 2009, 650. https://doi.org/10.1007/978-3-540-49661-8_25.
6. Moumen A., Fattouhi M., Abderrafi K., El Hafidi M., Ouascit S. Nickel colloid nanoparticles: synthesis, characterization, and magnetic properties. J. Cluster Sci., 2019, 30: 581–588. https://doi.org/10.1007/s10876-019-01517-8.
7. Wang Z.K., Kuok M.H., Ng S.C., Lockwood D.J., Cottam M.G., Nielsch K., Wehrpohn R.B., Gosele U. Spin-wave quantization in ferromagnetic nickel nanowires. Phys. Rev. B, 2002, 89: Art. 27201. https://doi.org/10.1103/PhysRevLett.89.027201.
8. Murray C.B., Sun S., Doyle H., Betley T. Monodisperse 3d transition metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattice. Mrs. Bulletin, 2001, 26: 985–991. https://doi.org/10.1557/mrs2001.254.
9. Mornet S., Vasseur S., Grasset F., Veverka P., Goglio G., Demourgues A., Portier J., Pollert E., Duguet E. Magnetic nanoparticle design for medical applications. Prog. Solid State Chem., 2006, 34: 237–247. https://doi.org/10.1016/j.progsolidstchem.2005.11.010.
10. Guo D., Wu C., Hu H., Wang X., Li X., Chen B. Study on the enhanced cellular uptake effect of daunorubicin on leukemia cells mediated via functionalized nickel nanoparticles. Biomed. Mater., 2009, 4: Art. 025013. https://doi.org/10.1088/1748-6041/4/2/025013.
11. Tietze R., Zaloga J., Unterwegen H., Lyer S., Friedrich R.P., Janko C., Pottler M., Durr S., Alexiou C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 2015, 468: 463–470. https://doi.org/10.1016/j.bbrc.2015.08.022.
12. Chen M., Zhang Y., Huang B., Yang X., Wu Y., Liu B., Yuan Y., Zhang G. Evaluation of the antitumor activity by Ni nanoparticles with verbascoside. J. Nanomater., 2013, 2013: Art. 623497. https://doi.org/10.1155/2013/623497.
13. Angajala G., Radhakrishnan S. A review on nickel nanoparticles as effective therapeutic agents for inflammation. Inflammation & Cell Signaling, 2014, 1: Art. e271. https://doi.org/10.14800/ics.271.
14. Parisien A., Al-Zarka F., Hussack G., Baranova E.A., Thibault J., Lan, C.Q. Nickel nanoparticles synthesized by a modified polyol method for the purification of histidine-tagged single-domain antibody ToxA5.1. J. Mater. Res., 2012, 27: 2884–2890. https://doi.org/10.1557/jmr.2012.323.
15. Pandian C.J., Palanivel R., Dhananasekaran S. Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chinese J. Chem. Eng., 2015, 23: 1307–1315. https://doi.org/10.1016/j.cjche.2015.05.012.
16. Zhang G., Li J., Zhang G., Zhao L. Room-temperature synthesis of Ni nanoparticles as the absorbent used for sewage treatment. Adv. Mater. Sci. Eng., 2015, 2015: Art. 973648. https://doi.org/10.1155/2015/973648.
17. Jaji N.-D., Lee H.L., Hussin M.H., Akil H.M., Zakaria M.R., Othman M.B.H. Advanced nickel nanoparticle technology: from synthesis to application. Nanotechnol. Rev., 2020, 9: 1456–1480. https://doi.org/10.1515/ntrev-2020-0109.
18. Ealias A.M., Saravanakumar M. A review on the classification, characterization, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng., 2017, 263: 32019–32032. https://doi.org/10.1088/1757-899X/263/3/032019.
19. Chen D.H., Wu S.H. Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater., 2000, 12: 1354–1360. https://doi.org/10.1021/cm991167y.
20. Pandey A., Manivannan R. Chemical reduction technique for the synthesis of nickel nanoparticles. Int. J. Eng. Res. Appl., 2015, 5: 96–100. https://doi.org/10.2174/1877912305666150417232717.
21. Din M.I., Rani A. Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: a green adeptness. Int. J. Anal. Chem., 2016, 2016: Art. 3512145. https://doi.org/10.1155/2016/3512145.
22. Li J., Lee K.-P., Gopalan A.I. One-step preparation of nickel nanoparticle-based magnetic poly(vinyl alcohol) gels. Coatings, 2019, 9: Art. 744. DOI: 10.3390/coatings9110744. https://doi.org/10.3390/coatings9110744.
23. Roy P.S., Bhattacharya S.K. Size-controlled synthesis, characterization and electrocatalytic behaviors of polymer-protected nickel nanoparticles: a comparison with respect to two polymers. RSC Adv., 2014, 4: 13892–13900. https://doi.org/10.1039/C4RA00426D.
24. Singh V., Srinivas V., Ranot M., Angappane S., Park J.-G. Effect of polymer coating on the magnetic properties of oxygen-stabilized nickel nanoparticles. Phys. Rev. B, 2010, 82: Art. 054417. https://doi.org/10.1103/PhysRevB.82.054417.
25. Farooqi Z.H., Iqbal S., Khan S.R., Kanwal F., Begum R. Cobalt and nickel nanoparticles fabricated p(NIPAM-co-MAA) microgels for catalytic applications. e-Polymers, 2014, 14: 313–321. https://doi.org/10.1515/epoly-2014-0111.
26. Couto G.G., Klein J.J., Schreiner W.H., Mosca D.H., de Oliveira A.J.A., Zarbin A.J.G. Nickel nanoparticles obtained by a modified polyol process: synthesis, characterization, and magnetic properties. J. Coll. Interface Sci., 2007, 311: 461–468. https://doi.org/10.1016/j.jcis.2007.03.045.
27. Demidova Y., Simakova I., Prosvirin I., Murzin D.Yu., Simakov A. Size-controlled synthesis of Ni and Co metal nanoparticles by the modified polyol method. Int. J. Nanotechnol., 2016, 13: 1/2/3: 3–14. https://doi.org/10.1504/IJNT.2016.074519.
28. Anurai S., Tejanhiram Y., Mahdiyar B., Shivaraman R., Gopalakrishnan C., Karthigeyan A. Wet chemical synthesis of nickel nanostructures using different capping agents. Asian J. Chem. 2013, 25: Suppl. Iss.: 65–68.
29. Gopalan E.V., Malini K.A., Santhoshkumar G., Narayanan T.N., Joy P.A., Al-Omari I.A., Kumar D.S., Yoshida Y., Anantharaman M.R. Template-assisted synthesis and characterization of passivated nickel nanoparticles. Nanoscale Res. Lett. 2010, 5: 889–897. https://doi.org/10.1007/s11671-010-9580-7.
30. Pirkkalainen K., Vainio U., Kisko K., Elbra T., Kohout T., Kotelnikova N.E., Serimaa R. Structure of nickel nanoparticles in a microcrystalline cellulose matrix studied using anomalous small-angle X-ray scattering. J. Appl. Cryst., 2007, 40: 489–494. https://doi.org/10.1107/S0021889806055804.
31. Mazumder A., Davis J., Rangari V., Curry M. Synthesis, characterization, and applications of dendrimer-encapsulated zero-valent Ni nanoparticles as antimicrobial agents. Int. Scholarly Res. Notices, 2013, 2013: Art. 843709. https://doi.org/10.1155/2013/843709.
32. Knecht M.R., Garcia-Martinez J.C., Crooks R.M. Synthesis, characterization, and magnetic properties of dendrimer-encapsulated nickel nanoparticles containing <150 atoms. Chem. Mater. 2006, 18: 5039–5044. https://doi.org/10.1021/cm061272p.
33. Kalbasi R.J., Zamani F. Synthesis and characterization of Ni nanoparticles incorporated into hyperbranched polyamidoamine-polyvinylamine/SBA-15 catalist for simple reduction of nitro aromatic compounds. RSC Adv., 2014, 4: 7444–7453. https://doi.org/10.1039/c3ra44662j.
34. Zhu Z., Guo X., Wu S., Zhang R., Wang J., Li L. Preparation of nickel nanoparticles in spherical polyelectrolyte brush nanoreactor and their catalytic activity. Ind. Eng. Chem. Res. 2011, 50: 13848–13853. https://doi.org/10.1021/ie2017306.
35. Permyakova N.M., Zheltonozhskaya T.B., Poguliai Y.V. Micelle formation and stabilization of metal nano-particles in aqueous solutions of diblock copolymers with poly(acrylic acid) and poly(ethylene oxide). Mol. Cryst. Liq. Cryst., 2011, 536: 372–379. https://doi.org/10.1080/15421406.2011.538589.
36. Fedorchuk S., Zheltonozhskaya T., Gomza Yu., Kunitskaya L., Demchenko O. Synthesis of silver nano-particles in the matrices of block and graft copolymers and polymer-inorganic substances in water. Macromol. Symp., 2012, 317–318: 103–116. https://doi.org/10.1002/masy.201100098.
37. Fedorchuk S.V., Zheltonozhskaya T.B., Gomza Yu.P., Klymchuk D.O., Kunitskaya L.R. Morphology of silver nanoparticles in the micelle-forming block copolymers. Mol. Cryst. Liq. Cryst., 2014, 590: 172–178. https://doi.org/10.1080/15421406.2013.874213.
38. Fedorchuk S.V., Zheltonozhskaya T.B., Gomza Yu.P., Nessin S.D., Klymchuk D.O. Morphology of silver nanoparticles in the graft copolymer matrices. J. Proc. Int. Conf. “Nanomaterials: Applications and Properties”, 2013, 2: Art. 02PCN31.
39. Zheltonozhskaya T.B., Fedorchuk S.V., Klymchuk D.O., Gomza Yu.P., Nessin S.D. Graft copolymers PVA-g-PAAm as effective matrices for the formation and stabilization of silver nanoparticles. Polymeric J., 2016, 38: 244–254 (in Ukrainian).
40. Zheltonozhskaya Т.B., Permyakova N.M., Kondratiuk T.O., Beregova T.V., Klepko V.V., Melnik B.S. Hybrid-stabilized silver nanoparticles and their biological impact on hospital infections, healing wounds, and wheat cultivation. French-Ukainian J. Chem., 2019, 7: 20–39. https://doi.org/10.17721/fujcV7I2P20-39.
41. Zheltonozhskaya T.B., Permyakova N.M., Kravchenko O.O., Maksin V.I., Nessin S.D., Klepko V.V., Klymchuk D.O. Polymer/inorganic hybrids containing silver nanoparticles and their activity in the disinfection of fish aquariums/ponds. Polym.-Plast. Technol. Mater., 2021, 60: 369–391. https://doi.org/10.1080/25740881.2020.1811318.
42. Zheltonozhskaya Т.B., Zagdanskaya N.Е., Demchenko О.V., Momot L.N., Permyakova N.М., Syromyatnikov V.G., Kunitskaya L.R. Graft copolymers with chemically complementary components as a special class of high-molecular-weight compounds. Russ. Chem. Rev., 2004, 73: 811–829. https://doi.org/10.1070/RC2004v073n08ABEH000901.
43. Zheltonozhskaya T., Permyakova N., Momot L. Intramolecular polycomplexes in block and graft copolymers. Ch.5. In: Hydrogen-Bonded Interpolymer Complexes. Formation, Structure and Application. Eds. Khutoryanskiy V. and Staikos G. New Jersey–London–Singapore etc.: World Scientific, 2009: 85–153. https://doi.org/10.1142/9789812709776_0005.
44. Zheltonozhskaya Т.B., Permyakova N.М., Kunitskaya L.R., Klymchuk D.О. Synthesis of the micellar nanocontainers and nanoreactors based on the block and graft copolymers and polymer/inorganic hybrids. Ch. 1.3. In: Multifunctional nanomaterials for biology and medicine: molecular design, synthesis, and application. Ed. R.S. Stoika, Kyiv: Nauk. Dumka, 2017: 36–67 (in Ukrainian).
45. Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B., 2003, 107: 668–677. https://doi.org/10.1021/jp026731y.
46. Liz-Marzan L.M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir, 2006, 22: 32–41. https://doi.org/10.1021/la0513353.
47. Yershov B.G. Metal nanoparticles in aqueous solutions: electronic, optical and catalytic properties. Rus. Chem. J., 2001, XLV: 20–30 (in Russian).
48. Sharma V., Chotia C., Tarachand, Ganesan T.V., Okram G.S. Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles. Phys. Chem. Chem. Phys., 2017, 19: 14096–14106. https://doi.org/10.1039/C7CP01769C.
49. Mamuru S.A., Jaji N. Voltammetric and impedimetric behaviour of phytosynthesized nickel nanoparticles. J. Nanostruct. Chem., 2015, 5: 347–356. https://doi.org/10.1007/s40097-015-0166-x.
50. Wainwright E. Particle size characterization in turbid colloidal suspensions. Physics Department, The College of Wooster, Ohio, USA, 2014, 7. http://physics.wooster.edu/JrIS/Files/Web_Article_Wainwright.pdf.
51. Glavee G.N., Klabunde K.J., Sorensen C.M., Hadjipanayis G.C. Borohydride reduction of nickel and copper ions in aqueous and nonaqueous media. Controllable chemistry leading to nanoscale metal and metal boride particles. Langmuir, 1994, 10: 4726–4730. https://doi.org/10.1021/la00024a055.
52. Sari N., Kahraman E., Sari B., Özgün A. Synthesis of some polymer-metal complexes and elucidation of their structures. J. Macromol. Sci., Part A: Pure Appl. Chem., 2006, 43: 1227–1235. https://doi.org/10.1080/10601320600737484