2021 (2) 3
https://doi.org/10.15407/polymerj.43.02.095
Physics-mechanical and viscoelastic properties of polymer compositions based on synthetic oligomer ED-20 and epoxidized soybean oil
L.A. Gorbach,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ОRCID:0000-0003-2711-7244
e-mail: gorbachla@bigmir.net
N.V. Babkina,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0002-1803-0887
e-mail: nabab1906@gmail.com
O.G. Purikova,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0002-4606-8815
A.V. Barantsova,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0001-5781-2323
V.К. Grischenko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0002-4951-936X
О.О. Brovko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0003-0238-1137
Polym. J., 2021, 43, no. 2: 95-102.
Section: Structure and properties.
Language: Ukrainian.
Abstract:
The work was aimed at studying the effects of combining epoxidized soybean oil (ESO) with standard bisphenol type A epoxy resin (ED-20). The ED-20 / ESO ratios were 100/0, 90/10, 95/15 and 80/20 (wt%). The system was cured with amine hardener mono(cyanethyl) diethylenetriamine (MCDT), triethanolamine (TEA) and mixture thereof (TEA + MCDT) at different curing temperatures. The choice was based on the hardener’s ability to open oxirane cycles, form a spatial network and initiate several parallel reactions. The viscoelastic properties, mechanical properties (tensile strength and elongation) were studied the density of obtained ED-20 / ESO samples was determined.
The results showed that the introduction of ESO into epoxy resin ED-20 was accompanied by significant changes in the curing and final properties of the samples. It was shown that the physic- mechanical properties of polymer compositions ED-20 / ESO were determined by both the ESO content and the temperature of curing Depending on the selected curing mode, the addition of 5–10 wt.% of ESO increased the tensile strength relative to the σр value of the original epoxy matrix. The values of relative elongation increased significantly at 15-20 wt.% of ESO. By the method of dynamic mechanical analysis it was shown that the increase of ESO content leads to plasticization of epoxy composition and to reduction of crosslinking density. It was determined that 5-10 wt.% was the optimal concentration of ESO, at which the epoxy composition had improved physical and mechanical properties Further increase of ESO content reduced the crosslinking density and increased the defectiveness of the epoxy polymer, which causes premature failure in weak places of the structure under load.
Key words: epoxy resin, epoxidized soybean oil, viscoelastic properties, tensile strength, relative elongation.
REFERENCES
1. Chernin I.Z., Smehov F.M., Zherdev Yu.V. Epoksidnyie polimeryi i kompozitsii. M.: Himiya, 1982: 232.
2. Altuna F.I., Espo´sito L.H., Ruseckaite R.A., Stefani P.M. Thermal and Мechanical Properties of Anhydride-Cured Epoxy Resins with Different Contents of Biobased Epoxidized Soybean Oil. J. Appl. Polym. Sci, 2001, 120: 789–798. https://doi.org/10.1002/app.33097.
3. Karger-Kocsis J., Grishchuk S., Sorochynska L., Rong M.Z. Curing, Gelling, Thermomechanical, and Thermal Decomposition Behaviors of Anhydride-Cured Epoxy (DGEBA)/Epoxidized Soybean Oil Compositions. Polym. Eng. Sci, 2013. https://doi.org/10.1002/pen.23605.
4. Soo-Jin Park, Fan-Long Jin, Jae-Rock Lee. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil. Mater. Sci. Eng. Part A, 2004, 374: 109–114. https://doi.org/10.1016/j.msea.2004.01.002.
5. Meier M.A.R., Metzger J.O., Schubert U.S. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev, 2007, 36: 1788–1800. https://doi.org/10.1039/b703294c.
6. G¨uner F.S., Yagci Y., Erciyes A.T. Polymers from triglyceride oils. Prog. Polym. Sci, 2006, 31: 633–670. https://doi.org/10.1016/j.progpolymsci.2006.07.001.
7. Mustata A. Fanica, Tudorachi Nita, Rosu Dan. Curing and thermal behavior of resin matrix for composites based on epoxidized soybean oil/diglycidyl ether of bisphenol. Composites.Part B, 2011, 42 : 1803–1812. https://doi.org/10.1016/j.compositesb.2011.07.003.
8. Anastas P. J., Warner J.C. Green Chemistry: Theory and Practice. London: Oxford University, 1998: 144.
9. Hоfer R., Selig M. Green Chemistry and Green Polymer Chemistry. Polymer Science: A Comprehensive Reference, 2012. https://doi.org/10.1016/B978-0-444-53349-4.00252-1.
10. Hourston D.J. Degradation of Plastics and Polymers. Shreir’s Corrosion. 2010. 3: 2369–2386. https://doi.org/10.1016/B978-044452787-5.00116-5.
11. Shah A. A., Hasan F., Hameed A., Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnology Advances, 2008, 26: 246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005.
12. Liu W., Tingting C., Tianshun X., Qiu R. Soybean oil-based thermosets withN-vinyl-2-pyrrolidone as crosslinking agent for hemp fiber composites. Composites Part A: Applied Science and Manufacturing, 2016, 82: 1–7. https://doi.org/10.1016/j.compositesa.2015.11.035.
13. Tan S. G., Chow W. S. Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review. Polym. Plast. Techn. Eng, 2010, 49: 1581–1590. https://doi.org/10.1080/03602559.2010.512338.
14. Wang R., Schuman T. P. Vegetable oil-derived epoxy monomers and polymer blends: A comparative study with review. Expr. Polym. Lett, 2013, 7, no. 3: 272–292. https://doi.org/10.3144/expresspolymlett.2013.25.
15. Zhu J., Chandrashekhara K., Flanigan V., Kapila S. Curing and Mechanical Characterization of a Soy-Based Epoxy Resin System. J. Appl. Polym. Sci, 2004, 91: 3513–3518. https://doi.org/10.1002/app.13571.
16. Friasa Célia F., Serraa Arménio C., Ramalhob A., Coelhoa Jorge F.J., Fonseca Ana C. Preparation of fully biobased epoxy resins from soybean oil based amine hardeners. Industrial Crops & Products, 2017, no. 109: 434–444. https://doi.org/10.1016/j.indcrop.2017.08.041.
17. J.-E. Ehlers, N.G. Rondan, L.K. Huynh, Ha Phan, Marks M., Truong T.N. Theoretical study on mechanisms of the epoxy amine curing reaction. Macromol, 2007, 40, no. 12: 4370–4377. https://doi.org/10.1021/ma070423m.
18. Lapitskiy V.A., Kritsuk A.A. Fiziko-mehanicheskie svoystva epoksidnyih polimerov i stekloplastikov. Kiev: Nauk. dumka, 1986: 92.
19. Tkalich M. G., Gorbach L. A., Shumskiy V. P., Getmanchuk I. P., Brovko O. O. Vpliv spivvidnoshennya vihidnih reagentiv na reokinetiku ta v’yazkopruzhni vlastivosti otverdnenogo aminom epoksidnogo oligomeru. Polym.J.(Ukr), 2015, 37, no. 4: 341–346. https://doi.org/10.15407/polymerj.37.04.341.
20. Mustata F. R., Tudorachi N., Bicu I. Industrial & Engineering Chemistry Research, 2013, 52: 17099–17110. https://doi.org/10.1021/ie402221n.
21. Nilsen L. Mehanicheskie svoystva polimerov i ih kompozitsiy. M.: Himiya, 1978: 310.
22. Menard K.P. Dynamic Mechanical Analysis: A Practical Introdution. Boca Raton-London-New York: Taylor and Francis Group. CRC Press, 2008: 218. https://doi.org/10.1201/9781420053135.