2021 (2) 4

https://doi.org/10.15407/polymerj.43.02.103

UV SPECTROSCOPY AND KINETIC RESEARCH OF PHOTODEGRADATION OF METHYL ORANGE IN THE PRESENCE OF TITANIUM DIOXIDE AND β-CYCLODEXTRIN OR ITS DERIVATIVES

Yu.V. Bardadym,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ОRCID: 0000-0002-9809-0897
e-mail: yuliia.bardadym@gmail.com

S.M. Kobylinskyi,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0002-4915-2502
e-mail: sergiy.kobylinskiy@gmail.com

L.V. Kobrina,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0001-6801-0801
e-mail: kobrina.larisa@gmail.com

S.V. Riabov,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

ORCID: 0000-0003-2996-3794
e-mail: sergii.riabov@gmail.com
Polym. J., 2021, 43, no. 2: 103-112.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

The research is devoted to the study of the effect of β-cyclodextrin (β-CD) and its derivatives on the photocatalytic degradation of methyl orange in aqueous solutions in the presence of titanium dioxide. It has been shown that the kinetics of photodegradation of methyl orange is more accurately described by the pseudo first order equation for all investigated pH values. In the presence of cyclodextrins β-CD and 2-hydroxypropyl-β-cyclodextrin, acceleration of photodegradation was observed only after 30 min of irradiation. As a result, the oxidation of hydroxyl groups of cyclodextrin occurred. A significant slowdown in photodestruction in the TiO2-β-CD sample during the first 45 min is explained by the formation of inclusion complexes of cyclodextrin with methyl orange, which prevented the destruction of dye. The use of the β-cyclodextrin, its derivatives and increasing the acidity of the medium accelerates the processes of photodestruction of methyl orange in distilled and natural waters. Methyl orange was decolorized for 20 – 25 min in solutions of all investigated cyclodextrin derivatives at pH 2.5. The destruction of methyl orange was most effective with the use of sulfobutyl ether β-CD. The bactericidal lamp (λ = 254 nm) allows to increase the rate of destruction during the irradiation process. Methyl orange discolored much faster under the action of a bactericidal lamp than using only ultraviolet lamps with λ = 365 nm. A slight slowdown in the decomposition process is observed after several irradiation cycles. This may be due to the influence of the formed products of destruction. However, under such conditions, the by-products of reactions decompose much faster. The use of cyclodextrins is possible without significant loss of efficiency up to 8 cycles.

 

Key words: titanium dioxide, cyclodextrin, photodegradation, methyl orange.

 

 

REFERENCES
1. Wei A., Xiong L., Sun L., Liu Y. J., Li W. W. CuO nanoparticle modified ZnO nanorods with improved photocatalytic activity. Chin. Phys. Lett., 2013, 30, 046202-1-046202-5.
https://doi.org/10.1088/0256-307X/30/4/046202.
2. Royer B., Cardoso N. F., Lima E. C., Vaghetti J. C. P., Simon N. M., Calvete T., Veses R. C. Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions −kinetic and equilibrium study. J. Hazard. Mater., 2009, 164, 1213–1222. https://doi.org/10.1016/j.jhazmat.2008.09.028.
3. Da Dalt S., Alves A. K., Bergmann C. P. Photocatalytic degradation of methylorange dye in water solutions in the presence of MWCNT/TiO2composites. Mater. Res. Bull., 2013, 48, 1845–1850. https://doi.org/10.1016/j.materresbull.2013.01.022
4. Brookstein D. S. Factors associated with textile pattern dermatitis caused bycontact allergy to dyes finishes, foams, and preservatives. Dermatol. Clin., 2009, 27309–322. https://doi.org/10.1016/j.det.2009.05.001.
5. Lima R. O. A., Bazo A. P., Salvadori D. M. F., Rech C. M., Oliveira D. P., Umbuzeiro G. A. Mutagenic and carcinogenic potential of a textile azo dyeprocessing plant effluent that impacts a drinking water source. Mutat. Res.Genet. Toxicol. Environ. Mutagenesis 626, 2007, 53–60. https://doi.org/10.1016/j.mrgentox.2006.08.002.
6. Carneiro P. A., Umbuzeiro G. A., Oliveira D. P., Zanoni M. V. B. Assessment of water contamination caused by a mutagenic textile effluent/dye house effluent bearing disperse dyes. J. Hazard. Mater., 2010, 174, 694–699. https://doi.org/10.1016/j.jhazmat.2009.09.106.
7. Pitchaimuthu S., Velusamy P. Modification of the photocatalytic performance of various metaloxides by the addition of β-cyclodextrin under visible light irradiation. Journal of Water Process Engineering., 2017, 16, 329–337. https://doi.org/10.1016/j.jwpe.2016.10.009.
8. Forgacs E., Cserhati T., Oros G. Removal of synthetic dyes from wastewaters: a review. Environ. Int., 2004, 30, 953 – 971. https://doi.org/10.1016/j.envint.2004.02.001.
9. Wang W., Tad M. O., Shao Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev., 2015, 44, 5371–5548. https://doi.org/10.1039/C5CS00113G.
10. Ibrahim R. K., Hayyan M., Al Saadi M. A., Hayyan A., Ibrahim S. Environmental application of nanotechnology: air, soil, and water. Environ. Sci. Pollut. R., 2016, 23, 13754–13788. https://doi.org/10.1007/s11356-016-6457-z.
11. Brillas E., Martınez-Huitle C. A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B Environ., 2015, 166 – 167, 603–643. https://doi.org/10.1016/j.apcatb.2014.11.016.
12. Ameta R., Benjamin S., Ameta A., Ameta S. Photocatalytic degradation of organic pollutants: a review. Mater. Sci. Forum., 2012, 734, 247–272. https://doi.org/10.4028/www.scientific.net/MSF.734.247.
13. Reddy P. A. K., Reddy P. V. L., Kwon E., Kim K., Akter T., Kalagara S. Recent advances in photocatalytic treatment of pollutants in aqueous media. Environ. Int., 2016, 91, 94–103. https://doi.org/10.1016/j.envint.2016.02.012.
14. Serpone N., Emeline A. V. Semiconductor photocatalysis — past, present, and future outlook. J. Phys. Chem. Lett. 2012, 3, 673–677. https://doi.org/10.1021/jz300071j.
15. Li Y., Chen F., He R., Wang Y., Tang N. Semiconductor Photocatalysis for Water Purification. Nanos. Mater. in Water Purif., 2019, 24, 689–705. https://doi.org/10.1016/B978-0-12-813926-4.00030-6.
16. Taka A. L., Pillay K., Mbianda X. Y. Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: A review. Carbohydrate Polymers., 2017, 159, 94–107. https://doi.org/10.1016/j.carbpol.2016.12.027.
17. Hao O. J., Kim H., Chiang P. Decolorization of wastewater. Crit. Rev. Environ. Sci. Technol. 30, 449–505. https://doi.org/10.1080/10643380091184237.
18. Varan G., Varan C., Erdogar N., Hincal A. A., Bilensoy E. (2017). Amphiphilic cyclodextrin nanoparticles. Int. J. Pharm., 2000, 531 (2), 457–469. https://doi.org/10.1016/j.ijpharm.2017.06.010.
19. Lu S, Sun N., Wang T. Research on Photocatalytic Degradation of Methyl Orange by a β-Cyclodextrin/Titanium Dioxide Composite. Gen. Chem., 2017, 3, 164–169. https://doi.org/10.21127/yaoyigc20170007.
20. Kobrina L. V., Boyko V. V., Riabov S. V., Sinelnikov S. I., Bortnitskiy V. I., Bandurina D. Yu., Moskalenko O. V. Investigation of the inclusion complex of carboxymethylated β-cyclodextrin with phenoxatiin. Polymer j., 2019, 41, no. 3, 173−178. (in Ukrainian). https://doi.org/10.15407/polymerj.41.03.173.
21. Riabov S. V., Shmigol I. V., Kobylinskyi S. N., Kobrina L. V., Pokrovskyi V. A. MALDI study of modified cyclodextrins. Polymer j., 2007, 29, no. 4, 317−319. (in Russian).
22. Lu S., Sun N., Wang T. Research on Photocatalytic Degradation of Methyl Orange by a β-Cyclodextrin/Titanium Dioxide Composite. Gen. Chem., 2017, 3, 164−169. https://doi.org/10.21127/yaoyigc20170007.
23. Li F., Zhang L., Hu C., Xing X., Yan B., Gao Y., Zhou L. Enhanced azo dye decolorization through charge transmission by σ-Sb3+- azo complexes on amorphous Sb2S3 under visible light irradiation. Applied Catalysis B: Environmental, 2019, 240, 132−140. https://doi.org/10.1016/j.apcatb.2018.08.062.
24. Zhang W., Xao X., Zheng L., Wan C. Fabrication of TiO2/MoS2 Composite Photocatalyst and Its Photocatalytic Mechanism for Degradation of Methyl Orange under Visible Light. Can. J. Chem. Eng., 2015, 93, 1594−1602. https://doi.org/10.1002/cjce.22245.
25. Ahmed M., Khan Z. H. Electronic absorption spectra of benzoquinone and its hydroxy substituents and effect of solvents on their spectra. SpectrochimicaActa Part A., 2000, 56, 965−981. https://doi.org/10.1016/s1386-1425(99)00190-0.
26. Kamer G, Demirata B., Bayraktar R., Ozyurta D., Apak R. Nanoceria-based reactive species scavenging activity of antioxidants using N,N-dimethyl-p-phenylenediamine (DMPD) probe. Anal. Methods, 2019, 11, 1908−1915. https://doi.org/10.1039/C8AY02561D.