2021 (3) 6

https://doi.org/10.15407/polymerj.43.03.204

Development and research of polyurethane foam composite materials with lysozyme

T.V. Vislohuzova,
Institute of Macromolecular Chemistry of NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: rudenchyk@gmail.com

ORCID: 0000-0002-4071-4329

R.A. Rozhnova,
Institute of Macromolecular Chemistry of NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: rozhnovarita@gmail.com

ORCID: 0000-0003-3284-3435

N.A. Galatenko,
Institute of Macromolecular Chemistry of NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: politoks@merlin.net.ua

ORCID: 0000-0002-5961-5750

 

Polym. J., 2021, 43, no. 3: 204-213.

 

Section: Medical polymers.

 

Language: Ukrainian.

 

Abstract:

The article is devoted to the development and research of the structure and properties of polyurethane foam (PUF) composite materials with the antibacterial enzyme lysozyme. A series of PUF composite materials with lysozyme of various concentrations (1, 3 and 5 wt %) were obtained. It is established that the immobilization of lysozyme occurs due to intermolecular hydrogen bonds by the method of IR spectroscopy. According to the results of physical-mechanical tests the adhesive strength of polyurethane foam compositions with lysozyme is in the range of 0,82–1,16 MPa. The introduction of lysozyme into the composition of polyurethane foams and an increase its amount causes a decrease in the values of adhesion strength by 18,1–29,3 %. According to differential scanning calorimetry the tested systems are single-phase with a glass transition temperature in the range of -49,20 to -49,86 °C. The introduction of lysozyme into the composition causes an increase heating capacity at the glass transition, which can be associated with a decrease of the packing density of macrochains resulting in an increase in free volume, which leads to an increase molecular mobility. According to the results of the analysis of transmission optical microscopy micrographs the studied PUF have a microporous structure, which depends on the content of filler in their composition. It was found that the presence of lysozyme in the composition of composite materials leads to a decrease in the percentage of porosity, an increase in the number of pores with a diameter of up to 300 μm, which is 76,7–82,4 % (while for PUF – 69,5 %) and the absence of pores with a diameter larger than 990 μm. Thermogravimetric characteristics indicate the heat resistance of the synthesized PUF to a temperature of 179,95 °C, which allows dry sterilization of samples without changing their characteristics. PUF composite materials with lysozyme are promising materials that can be used in medical practice as polymer compositions for the treatment of wounds and burns.

Key words: polyurethane foam, composite material, lysozyme, porosity.

 

REFERENCES

1. Smirnov S.V., Shakhlamov M.V., Litinsky M.A., Yanshin D.V., Sachkov A.V., Obolensky V.N. Polyurethane foam covering for wounds, burns and ulcers. Wound Medicine, 2013, no. 2–3: 6–8. https://doi.org/10.1016/j.wndm.2013.10.001.
2. Fugmann B., Dietze M. Rezistentnye k infektsiiam penopoliuretany, sposob ikh polycheniia i primenenie v antisepticheskom pereviazochnom materiale dlia ran. Patent EA 200701183, Publ. 28.04.2008.
3. Galatenko N.A., Rozhnova R.A. Biologically active polymeric materials for medicine. Kyiv: Nauk. dumka, 2013: 210.
4. Kharkov L.V., Pkhakadze G.A., Dudko D.V., Galatenko N.A., Yusubov Yu.A. Kleevye soedineniia v cheliustno-litsevoi khirurgii. Kiev: Nauk. dumka, 1993: 79.
5. Pat. US 5474779A, Compositions for aiding in the regeneration of tissue with a prolonged immunomodulating effect. N. Bufius, N. Galatenko. Publ. 12.12.1995.
6. Lebedev Ye.V., Galatenko N.A., Rozhnova R.A., Kulesh D.V. Serial Production of Domestic Biologically Active Glue for Medical Purposes. Science and innivation. 2016, 12, no. 1: 61–65. http://dx.doi.org/10.15407/scine12.01.054.
7. Kuranov A.A., Malkov A.V., Afonin A.V. Geleobraznoe pokrytie iz elastichnogo penopoliuretana dlya zakrytiia ran razlichnoi etiologii. Patent RU 2424825, Publ. 27.07.2011.
8. Karpenko O.S., Galatenko N.A., Kiseleva T.A., Narozhayko L.F. Synthesis of new polyurethane foams for medical use. Polym. J. (Ukr.), 2018, 40, no. 1: 51–57. https://doi.org/10.15407/polymerj.40.01.051.
9. Zhang X., Wang Y.J., Sun M., Ren X., Zou Y.L., Wang Q.Y., Wang W. Purification and properties of lysozyme from a marine strain. Annals of Microbiology, 2008, 58: 89–94. https://doi.org/10.1007/BF03179450.
10. Mine Y., Ma F., Lauriau S. Antimicrobial Peptides Released by Enzymatic Hydrolysis of Hen Egg White Lysozyme. Journal of Agricultural and Food Chemistry, 2004, 52, no. 5: 1088–1094. https://doi.org/10.1021/jf0345752.
11. Carrillo W., Gómez-Ruiz J.A., Miralles B., Ramos M., Barrio D., Recio І. Identification of antioxidant peptides of hen egg-white lysozyme and evaluation of inhibition of lipid peroxidation and cytotoxicity in the Zebrafish model. European Food Research and Technology, 2016, 242, no. 10: 1777–1785. https://doi.org/10.1007/s00217-016-2677-1.
12. Sunwoo H., Gujral N. Chemical Composition of Eggs and Egg Products. In book: Handbook of Food Chemistry. P.C.K. Cheung, B.M. Mehta. Springer-Verlag Berlin Heidelberg. 2015: 1173. https://doi.org/10.1007/978-3-642-36605-5_28.
13. Phillips D.C. The Three-Dimensional Structure of an Enzyme Molecule. Scientific American, 1966, 215, no. 5: 78–90. https://doi.org/10.1038/scientificamerican1166-78.
14. Wang Q., Fan X., Hu Y., Yuan J., Cui L., Wang P. Antibacterial functionalization of wool fabric via immobilizing lysozymes. Bioprocess and Biosystems Engineering, 2009, 32: 633–639. https://doi.org/10.1007/s00449-008-0286-5.
15. Van Herreweghe J. M., Vanderkelen L., Callewaert L., Aertsen A., Compernolle G., Declerck P.J., Michiels C.W. Lysozyme inhibitor conferring bacterial tolerance to invertebrate type lysozyme. Cellular and Molecular Life Sciences, 2010, 67: 1177–1188. https://doi.org/10.1007/s00018-009-0241-x.
16. Mashkovsky M.D. Lekarstvennye sredstva. Moskva: Novaya volna, 16 edition. 2012: 1216.
17. Dekina S.S., Romanovska I.I., Ovsepyan A.M., Molodaya A.L., Pashkin I.I. Immobilization of lysozyme in polyvinyl alcohol cryogel. Biotechnologia Acta, 2014, 7, no. 3: 69–73. https://doi.org/10.15407/biotech7.03.069.
18. Chissov V.I., Reshetov I.V., Yudanova T.N., Skokova I.F. Povyazka dlya lecheniia ran. Patent RU 2174847. Publ. 20.10.2001.
19. Reshetov I.V., Yudanova T.N., Matorin O.V., Morozov D.S. Coating Material Containing Chlorhexidine and Lysozyme for Wound Treatment. Pharmaceutical Chemistry Journal, 2004, 38, no. 7: 388–390. https://doi.org/10.1023/B:PHAC.0000048441.64207.7c.
20. Stashenko K.V., Rudenchyk T.V., Rozhnova R.A., Kiselova T.O. Development of composite materials based on polyurethane urea with fragments of a copolymer of N-vinylpyrrolidone with vinyl alcohol and lysozyme. Voprosy Khimii i Khimicheskoi Tekhnologii (Ukr.), 2018, no. 2: 115–121.
21. Stashenko K.V., Rudenchyk T.V., Rozhnova R.A., Galatenko N.A., Narazhaiko L.F. Biocompatible composites with lysozyme based on polyurethane urea with N-vinyl pyrrolidone copolymer fragments, vinyl acetate and vinyl alcohol. Odesa National University Herald. Chemistry (Ukr.), 2018, 23, no. 2(66): 46–56. https://doi.org/10.18524/2304-0947.2018.2(66).132042.
22. Stashenko K.V., Rudenchyk T.V., Galatenko N.A., Rozhnova R.A. Synthesis and properties of composite materials based on polyurethane urea with fragments of polyvinyl butyral copolymer (vinyl acetate with vinyl alcohol) and lysozyme. Voprosy Khimii i Khimicheskoi Tekhnologii (Ukr.), 2020, no. 1: 71–79. http://dx.doi.org/10.32434/0321-4095-2020-128-1-71-79.
23. Stashenko K.V., Rudenchyk T.V., Rozhnova R.A., Galatenko N.A., Nechaeva L.Yu. Study of the influence of the model biological environment on the structure and properties of polyurethane ureas with lysozyme, which contain fragments of copolymer of vinyl butyral, vinyl acetate and vinyl alcohol in the structure. Polym. J. (Ukr.), 2019, 41, no. 3: 198–205. https://doi.org/10.15407/polymerj.41.03.198.
24. Kuliesh D.V., Stashenko K.V., Narazhayko L.F., Gritsenko V.P., Zakashun T.E. Research of biodegradation and biocompatibility of polymeric film materials with lysozyme. Bulletin of problems biology and medicine (Ukr.), 2019, no. 3 (152): 131–137. https://doi.org/10.29254/2077-4214-2019-3-152-131-137.
25. Pretsch E., Bёllmann P., Affolter C. Structure determination of organic compounds. Tables of Spectral Data. Springer-Verlag Berlin Heidelberg, 2009: 433.
26. ASTM D897 – 08(2016) Standard Test Method for Tensile Properties of Adhesive Bonds.