2021 (4) 1
https://doi.org/10.15407/polymerj.43.04.240
POLYMER BLENDS WITH ORDERED DISTRIBUTION OF CONDUCTIVE FILLER
Ye.P. Mamunya,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: ymamunya@ukr.net
ORCID: 0000-0003-3855-2786
Polym. J., 2021, 43, no. 4: 240-250.
Section: Review.
Language: Ukrainian.
Abstract:
This review highlight approaches to the formation of an ordered distribution of conductive filler in polymer blends. This distribution leads to a significant decrease of the percolation threshold in the polymer mixture, i.e. to a decrease in the critical concentration of the filler, at which the transition of the system from a non-conductive to a conductive state occurs. This improves the mechanical properties of the composition and its processability. It is shown that the ordered structure of the filler is formed in the polymer blend upon mixing the components in the melt under the action of three factors – thermodynamic (the ratio between the values of the interfacial tension of the filler-polymer A and filler-polymer B, as well as between polymers A and B), kinetic (the ratio between viscosities of polymer components A and B) and technological (the intensity and temperature of processing, as well as the order of introduction of a filler into a heterogeneous polymer matrix, which can enhance or suppress the effect of thermodynamic or kinetic factors). On the example of the works performed by the author on mixtures of thermoplastics filled with electrically conductive carbon fillers such as carbon black and carbon nanotubes, as well as a metal filler – dispersed iron, with the involvement of literature data on filled polymer blends, the influence of each of the factors on the formation of an ordered structure of the conducting phase in polymer blends is shown.
Key words: polymer blends, fillers, structure, percolation threshold.
REFERENCES
1. Mamunya Ye.P., Iurzhenko M.V., Lebedev E.V., Levchenko V.V., Chervakov O.V., Matkovska O.K., Svedlikovska O.S. Electroaktyvni polimerni materialy. Kyiv: Alfa-Reklama, 2013: 398. ISBN 978-966-2477-94-8.
2. Aharoni S.M. Electrical resistivity of a composite of conducting particles in an insulating matrix. J. Appl. Phys., 1972, 43, no 5: 2463–2465. https://doi.org/10.1063/1.1661529.
3. Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Techn., 2009, 69: 1486–1498. https://doi.org/10.1016/j.compscitech.2008.06.018.
4. Lux F. Review. Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. J. Mater. Sci., 1993, 28: 285–301. https://doi.org/10.1007/BF00357799.
5. Xue Q. The influence of particle shape and size on electric conductivity of metal–polymer composites. Europ. Polym. J., 2004, 40: 323–327. https://doi.org/10.1016/j.eurpolymj.2003.10.011.
6. Panda M., Srinivas V., Thakur A.K. Non-universal scaling behavior of polymer-metal composites across the percolation threshold. Results in Physics, 2015, 5: 136–141. https://doi.org/10.1016/j.rinp.2014.02.005.
7. Lipatov Yu.S., Mamunya Ye.P., Gladyreva H.A., Lebedev E.V. Vliyanie charaktera raspredeleniia sazhi na electroprovodnost binarnoi smesi polimerov. Vysokomolek. soed., 1983, А25, no. 7: 1483–1489. https://doi.org/10.1016/0032-3950(83)90285-X.
8. Lipatov Yu.S., Mamunya Ye.P., Lebedev E.V., Gladyreva H.A. Vliyanie sposoba vvedeniia sazhi na electroprovodnost smesi polyamid-sopolimer akrilonitrila, butadiena, stirola. Kompoz. polim. mater., 1983, no. 17: 9–14.
9. Poetschke P., Paul D. R. Formation of co-continuous structures in melt-mixed immiscible polymer blends. J. Macromol. Sci. Part C – Polym. Rev. 2003, C43, no. 1: 87–141. https://doi.org/10.1081/MC-120018022.
10. Sumita M., Sakata K., Hayakawa Y., Asai S., Miyasaka K., Tanemura M. Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym. Sci., 1992, 270: 134–139. https://doi.org/10.1007/BF00652179.
11. Mamunya Ye. Polymer blends filled with carbon black: structure and electrical properties. Macromol. Sympos., 2001, 170: 257–264. https://doi.org/10.1002/1521-3900(200106)170:1<257::AID-MASY257>3.0.CO;2-J.
12. Mamunya Ye.P. Morphology and percolation conductivity of polymer blends containing carbon black. J. Macromol. Sci., 1999, 38, no. 5–6: 615–622. https://doi.org/10.1080/00222349908248125.
13. Baudouin A-C., Devaux J., Bailly C. Localization of carbon nanotubes at the interface in blends of polyamide and ethylene–acrylate copolymer. Polymer, 2010, 51: 1341–1354. https://doi.org/10.1016/j.polymer.2010.01.050.
14. Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci., 1969, 13, no. 8: 1741–1747. https://doi.org/10.1002/app.1969.070130815.
15. Lu X., Kang B., Shi S. Selective localization of carbon black in bio-based poly (lactic acid)/recycled high-density polyethylene co-continuous blends to design electrical conductive composites with a low percolation threshold. Polymers, 2019, 11: 1583(1–14). https://doi.org/10.3390/polym11101583.
16. Mamunya Ye.P., Muzychenko Yu.V., Pissis P., Lebedev E.V., Shut M.I. Percolation phenomena in polymers containing dispersed iron. Polym. Eng. Sci., 2002, 42, no. 1: 90–100. https://doi.org/10.1002/pen.10930.
17. Mamunya Ye.P., Muzychenko Yu.V., Pissis P., Lebedev E.V., Shut M.I. Processing, structure and electrical properties of metal-filled polymers. J. Macromol. Sci., 2001, B40, no. 3–4: 591–602. https://doi.org/10.1081/MB-100106179.
18. Zois H., Mamunya Ye., Apekis L. Structure and dielectric properties of a thermoplastic blend containing dispersed metal. Macromol. Sympos., 2003, 198: 257–264. https://doi.org/10.1002/masy.200350839.
19. Li Y., Shimizu H. Conductive PVDF/PA6/CNTs nanocomposites fabricated by dual formation of cocontinuous and nanodispersion structures. Macromolecules, 2008, 41: 5339–5344. https://doi.org/10.1021/ma8006834.
20. Mamunya Ye.P., Levchenko V.V., Boiteux G., Lebedev E.V., Zanoaga M., Tanasa F. Electrical and mechanical properties of novel nanocomposites based on copolyamide–polypropylene polymer blends containing carbon nanotubes. Polym. J. (Ukr.), 2010, 32, no. 4: 313–320.
21. Fazovye processy v geterogennyh polimernyh sistemah. Pod red. E.V. Lebedeva. Kiev: Nauk. dumka, 2012: 432. ISBN 978-966-00-1249-3.
22. Gubbels F., Jerome R., Teyssie Ph., Vanlathem E., Deltour R., Calderone A., Parente V., Bredas J.L. Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites. Macromolecules, 1994, 27: 1972–1974. https://doi.org/10.1021/ma00085a049.
23. Mamunya E.P., Davidenko V.V., Lebedev E.V.. Effect of polymer-filler interface interactions on percolation conductivity of thermoplastics filled with carbon black. Composite Interfaces, 1997, 4, no. 4: 169–176. https://doi.org/10.1163/156855497X00145.