2021 (4) 3

https://doi.org/10.15407/polymerj.43.04.268

THE THERMODYNAMICS OF INTERACTIONS AND RELAXATION PROPERTIES OF THE POSS-CONTAINING NANOCOMPOSITES BASED ON POLYURETHANE-POLY(HYDROXYPROPYL METHACRYLATE) MATRIX, WHICH IS FORMED BY THE PRINCIPLE OF IPNS

L.V. Karabanova,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: lyudmyla_karaban@ukr.net

ORCID: 0000-0002-5909-0042

L.A. Honcharova,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: glove@meta.ua

ORCID: 0000-0003-2529-9945

N.V.Babkina,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: nbabkina@mail.ru

ORCID: 0000-0002-1803-0887

Polym. J., 2021, 43, no. 4: 268-279.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

A series of the nanocomposites based on a multicomponent polymer matrix consisting of polyurethane and poly(hydroxypropyl methacrylate) and 1,2-propanediolysobutyl polyhedral oligomeric silsesquioxane (1,2-propanediolysobutyl-POSS), used as a functionalized nanofiller, was synthesized. The polymer matrix was formed on the principle of interpenetrating polymer networks (IPNs). The influence of 1,2-propanediolysobutyl-POSS amount on the thermodynamics of polymer components of the matrix interactions and on the dynamic mechanical properties of the created nanocomposites was studied. With purpose of the thermodynamic parameters interactions calculations the isothermal sorption of methylene chloride vapour by samples was investigated. The methylene chloride vapour sorption by the samples was studied using a vacuum installation and a McBain balance. By calculations of the thermodynamic parameters of PU and PHPMA interactions was shown that the free energy of PU and PHPMA mixing was positive. The introduction of 1-3 wt % of POSS lead to further phase separation in semi-IPNs. This is due to concentration of POSS particles in the PU’s nanodomains. The increasing of POSS content up to 5-10 wt % lead to compatibi-lization in semi-IPNs. These is due to concentration of POSS nanoparticles not only in the PU’s nanodomains but also in the interphase region of semi-IPN.

The dynamic mechanical properties of the created nanocomposites were investigated and the degree of polymer components segregation was calculated. It was shown that there are two peaks of tan δ (PU and PHPMA) in the nanocom-posites. The introduction of 1-3 wt % of POSS lead to increasing of tan δ peak of PHPMA and to deepening of the bridge between two peaks (PU and PHPMA). At the same time the degree of polymer components of the matrix segregation became ​​higher. This means the further phase separation in semi-IPNs. Increasing of 1,2-propanediolysobutyl-POSS amount up to 5-10% leads to the concentration of the nanofiller not only in the nanodomains of PU, but also in the interfacial layers. This leads to a change in the free energy of polymer components mixing, which becomes negative. At the same time the degree of polymer components of the matrix segregation became ​​significantly reduced. These means that the process of compatibilization took part in the semi-IPNs.

 

Key words: nanocomposites, 1,2-propanediolisobutyl-POSS, polyurethane, poly (hydroxypropyl methacrylate), thermodynamics of interactions, dynamic mecha-nical properties, free energy of mixing, degree of polymer components segregation.

 

REFERENCES

1. Ray S.S., Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci., 2003, 28: 1539–1561. https://doi.org/10.1016/j.progpolymsci.2003.08.002 .
2. Shaffer M.S.P., Sandler J.K.W. Processing and properties of nanocomposites. Carbon Nanotube/Nanofibre Polymer Composites, Singapore: World Scientific, 2006: 1–59. ISBN 978-981-270-390-3.
3. Bershtein V.A., Gun`ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A.A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. RSC Adv., 2013, 3: 14560–14570. https://doi.org/10.1039/c3ra40295a.
4. Karabanova L.V., Bershtein V.A., Sukhanova T.E., Yakushev P.N., Egorova L.M., Lutsyk E.D., Svyatyna A.V., Vylegzhanina M.E. 3D diamond-containing nanocomposites based on hybrid polyurethane–poly(2-hydroxyethyl methacrylate) semi-IPNs: Composition-nanostructure-segmental dynamics-elastic properties relationships. J. Pol. Sci. B, 2008, 46: 1696–1712. https://doi.org/10.1002/polb.21506.
5. Moniruzzaman M., Winey K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules, 2006, 39: 5194–5205. https://doi.org/10.1021/ma060733p.
6. Wolinska-Grabczyk A., Jankowski A. Gas transport properties of segmented polyurethanes varying in the kind of soft segments. Sep. Pur. Tech., 2007, 57: 413–417. https://doi.org/10.1016/j.seppur.2006.03.025.
7. Gumenna M.A., Shevchuk A.V., Klimenko N.S., Shevchenko V.V. Polyurethanes on the base of polyhedral oligosilsesquioxanes (POSS). Polym. J. (Ukr.), 2007, 29: 177–185.
8. Karabanova L.V., Whitby R.L.D., Bershtein V.A., Korobeinyk A.V., Yakushev P.N., Bondaruk O.M., Lloyd A.W., Mikhalovsky S.V. The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multi-walled carbon nanotube composites with low filler content. Colloid Polym. Sci., 2013, 291: 573–583. https://doi.org/10.1007/s00396-012-2745-4.
9. Karabanova L.V., Whitby R.L.D., Korobeinyk A., Bondaruk O., Salvage J.P., Lloyd A.W., Mikhalovsky S.V. Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Comp. Sci.Tech., 2012, 72: 865–872. https://doi.org/10.1016/j.compscitech.2012.02.008.
10. Madhavan K., Reddy B.S.R. Structure–gas transport property relationships of poly(dimethylsiloxane–urethane) nanocomposite membranes. J. Mem. Sci., 2009, 342: 291–299. https://doi.org/10.1016/j.memsci.2009.07.002.
11. Fomenko A.A., Gomza Yu.P., Klepko V.V., Gumenna M.A., Klimenko N.S., Shevchenko V.V. Dielectric properties, conductivity and structure of urethane composites based on polyethylene glycol and polyhedral silsesquioxane. Polym. J. (Ukr.), 2009, 31, № 2: 137–143 [in Ukrainian].
12. Mahapatra S.S., Yadav S.K., Cho J.W. Nanostructured hyperbranched polyurethane elastomer hybrids that incorporate polyhedral oligosilsesquioxane. React. Funct. Polym., 2012, 72: 227–232. https://doi.org/10.1016/j.reactfunctpolym.2012.02.001.
13. Lewicki J.P., Pielichowski K., Jancia M., Hebda E., Albo R.L.F., Maxwell R.S. Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polym. Degrad. Stab., 2014, 104: 50–56. http://dx.doi.org/10.1016/j.polymdegradstab.2014.03.025.
14. Wei K., Wang L., Zheng S. Organic–inorganic polyurethanes with 3, 13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polym. Chem., 2013, 4: 1491–1501. https://doi.org/10.1039/c2py20930f.
15. Bourbigot S., Turf T., Bellayer S., Duquesne S. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym. Degrad. Stab., 2009, 94: 1230–1237. https://doi.org/10.1016/j.polymdegradstab.2009.04.016.
16. Huang J., Jiang P., Li X., Huang Y. Synthesis and characterization of sustainable polyurethane based on epoxy soybean oil and modified by double-decker silsesquioxane. J. Mater. Sci., 2016, 51: 2443–2452. https://doi.org/10.1007/s10853-015-9557-0.
17. Karabanova L.V., Honcharova L.А., Sapsay V.I., Klymchuk D.O. Synthesis, morphology and thermal properties of the POSS-containing polyurethane nanocomposites. Chem. Phys. Tech. Surf., 2016, 7 (4): 413–420. https://doi.org/10.15407/hftp07.04.413.
18. Karabanova L.V., Honcharova L.A., Shtompel V.I. Nanocomposites based on polyurethane matrix and 1,2-propanediolisobutyl-POSS: structure and morphological peculiarities. Polym. J. (Ukr.), 2020, 42(2): 85–95 [in Ukrainian]. https://doi.org/10.15407/polymerj.42.02.085.
19. Karabanova L.V., Honcharova L.A., Shtompel V.I. Structure and properties of the POSS-containing nanocomposites based on polyurethane matrix. In book: Nanomaterials and nanocomposites, nanostructure surfaces, and their applications. O. Fesenko, L. Yatsenko (Eds), Switzerland: Springer Proceedings in Physics 246, 2020: 485–505. https://doi.org/10.1007/978-3-030-51905-6_34.
20. Wang W., Guo Y., Otaigbe J.U. The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites. Polymer, 2009, 50: 5749–5757. https://doi.org/10.1016/j.polymer.2009.05.037.
21. Lai Y.S., Tsai C.W., Yang H.W., Wang G.P., Wu K.H. Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Mat. Chem. Phys., 2009, 117: 91–98. https://doi.org/10.1016/j.matchemphys.2009.05.006.
22. Huitron-Rattinger E., Ishida K., Romo-Uribe A., Mather P.T. Thermally modulated nanostructure of poly(ε–caprolactone)–POSS multiblock thermoplastic polyurethanes. Polymer, 2013, 54: 3350–3362. http://doi.org/10.1016/j.polymer.2013.04.015.
23. Lipatov Y.S. Polymer reinforcement. Toronto: ChemTec. Publishing, 1995: 406. ISBN 1-895198-08-9.
24. Lipatov Y.S., Karabanova L.V. Gradient interpenetrating polymer networks. In book: Advances in interpenetrating polymer networks. D. Klempner, K.C. Frish (Eds), vol.4, Lancaster: Techomic, 1994: 191–212. ISBN 0-877627-08-8.
25. Karabanova L.V., Sergeeva L.M., Boiteux G. Filler effect on formation and properties of reinforced interpenetrating polymer networks. Composite Interfaces, 2001, 8(3-4): 207–219. https://doi.org/10.1163/15685540152594677.
26. Karabanova L.V., Gomza Yu.P., Nesin S.D., Bondaruk O.M., Voronin E.P., Nosach L.V. Nanocomposites based on multicomponent polymer matrices and nanofiller densil for biomedical application. In book: Nanophysics, Nanophotonics, Surface Studies and Application. O. Fesenko, L. Yatsenko (Eds), Switzerland: Springer, 2016: 451–475. ISBN 978-3-319-30736-7.
27. Bershtein V.A., Gun`ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A.A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. RSC Advances, 2013, 3: 14560–14570. https://doi.org/10.1039/c3ra40295a.
28. Karabanova L.V., Bershtein V.A., Gomza Yu.P., Kirilenko D.A., Nesin S.D., Yakushev P.N. Nanostructure, dynamics, and mechanical properties of nanocomposites based on polyurethane-poly(2-hydroxyethyl methacrylate) semi-interpenetrating polymer network with ultralow MWCNT contents. Polym. Composites, 2018, 39: 263–273. https://doi.org/10.1002/pc.23926.
29. Karabanova L.V., Boiteux G., Seytre G., Stevenson I., Lloyd A.W., Mikhalovsky S.V., Helias M., Sergeeva L. M., Lutsyk E. D., Svyatyna A. Phase separation in the polyurethane/poly(2-hydroxyethylmethacrylate) semi-interpenetrating polymer networks synthesized by different ways. Pol. Eng. Sci., 2008, 48(3): 588–597. https://doi.org/10.1002/pen.20965
30. Tager A.A. Termodinamicheskaya ustoychivost’ sistem polimer-rastvoritel’ i polimer-polimer. Vysokomolekulyar. soyed. Ser. A. (Rus.), 1972, 14(12): 2690–2705.http://polymsci.ru/static/Archive/1972/VMS_1972_T14_12/VMS_1972_T14_12_2690-2706.pdf.
31. Karabanova L.V., Lloyd A.W., Mikhalovsky S.V., Helias M., Phillips G. J., Rose S. F., Mikhalovska L., Boiteux G., Sergeeva L. M., Lutsyk E. D., Svyatyna A. Polyurethane/poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks for biomedical applications. J. Mater. Sci.: Mater. Med., 2006, 17(12): 1283–1296. https://doi.org/10.1007/s10856-006-0603-y.
32. Nil’sen L. Mekhanicheskiye svoystva polimerov i polimernykh kompozitsiy. M.: Khimiya (Rus.), 1978: 310.
33. Karabanova L.V. ,Honcharova L.A. ,Babkina N.V., Sapsay V.I., Klymchuk D.O. POSS-containing nanocomposites based on polyurethane/poly(hydroxypropyl methacrylate) polymer matrix: dynamic mechanical properties and morphology. Polymer Testing, 2018, 69: 556–562. https://doi.org/10.1016/j.polymertesting.2018.06.012.