2021 (4) 6

https://doi.org/10.15407/polymerj.43.04.295

PHYSICAL AGING OF ORGANO-INORGANIC NANOCOMPOSITES BASED ON POLYIMIDE WITH CARD SUBSTITUENTS

N.V. Kozak,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: kozaksmalt@ukr.net

ORCID: 0000-0001-6200-4048

T.A. Shantalii,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: shantaliitatiana@gmail.com

Polym. J., 2021, 43, no. 4: 295-303.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

The physical aging was investigated of obtained by sol-gel technology nanocomposites based on polyimide (PI) with card substituents and tetraethoxysylane (TEOS). The results for organic-inorganic composites, that contain of 5%. 20% or 50 % of TEOS, demonstrate that at temperatures well below (400K) the glass transition temperature of the polymer can take place changes in the dynamic characteristics of polymer macrochains and its permeability to low molecular probe as well as changes in aggregation of inorganic component. According to the methods of EPR, optical microscopy, etc. changes that occur in the characteristics of sol-gel polyimide based nanocomposites during long-term storage at temperatures much lower than the glass transition temperature of the polymer can be described as follows. The segmental mobility of the organic component is significantly reduced and the dynamic heterogeneity of the polymer increases. The decrease in the relative permeability of aged nanocomposites with increased content of inorganic component as compared with aged pure PI does not correlate with the content of TEOS in contrast to the initial samples of the same composition. PI macrochains chemically bonded to the inorganic phase have limited ability to realize an optimal conformation in the process of thermal relaxation (physical aging) so the increasing the content of the inorganic component has less effect on reducing the permeability of aged composites compared to aged pure PI. This is consistent with changes in the distribution of inorganic aggregates of composites. There are changes in the mean size of aggregates of inorganic particles in the composite and a decrease in their number. Smoothing is observed of the surface of nanocomposite films as well as disappearance of inhomogeneities caused by the surface of support. Due to the chemical bonding of inorganic particles and polyimide matrix, the peculiarities of the physical aging process of such composites are due to the mutual influence of the inorganic and polymer components.

 

Key words: sol-gel method, polyimide, nanocomposite, physical ageing, nitroxyl spin probe, optical microscopy.

 

REFERENCES

1. Struik L.C.E. Physical Aging in Amorphous Polymers and Other Materials. Amsterdam: Elsevier, 1978: 230.
2. Саngialosi D., Alegrfa A., Colmenero J. Effect of nanostructure on the thermal glass transition and physical aging in polymer materials. Progress in Polymer Science, 54–55: 128–147. http://dx.doi.org/doi:10.1016/j.progpolymsci.2015.10.005.
3. Lipatov Y.S., Kozak N.V., Nizel’skii Y.N., Rosovitskii V.F., Babkina N.V., Kosyanchuck L.F., Fainerman A.E. Effect of metal compounds on the physical aging of poly (urethanes). Polymer science. Series A , 41 (8): 847–853.
4. Volynskii A. L., Efimov A. V., Bakeev N. F. Structural aspects of physical aging of polymer glasses. Polymer Science Series C, 2007, 49: 301–320. https://doi.org/10.1134/S1811238207040017
5. Heckscher T., Olsen N.B., Miss K., Dyre J.C. Physical aging of molecular glasses studied by a device allowing for rapid thermal equilibration. J. Chem. Phys., 2010, 133: 174514/1-14. https://doi.org/10.1063/1.3487646.
6. Baeumchen O., McGraw J.D., Forrest J.A., Dalnoki-Veress K. Reduced glass transition temperatures in thin polymer films: Surface effect or artifact?. Phys. Rev. Lett., 2012, 109: 055701/1-5. https://doi.org/10.1103/PhysRevLett.109.055701.
7. Boucher V.M., Cangialosi D., Alegra A., Colmenero J. Enthalpy recovery in nanometer to micrometer thick ps films. Macromolecules, 2012, 45: 5296–5306. https://doi.org/10.1021/ma300622k .
8. Bansal A., Yang H., Li C., Cho K., Benicewicz B., Kumar S., Schadler L. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat. Mater., 2005, 4: 693–698. https://doi.org/10.1038/nmat1447.
9. Sanz A., Ruppel M., Douglas J.F., Cabral J.T. Plasticization effect of C 60 on the fast dynamics of polystyrene and related polymers: an incoherent neutron scattering study. J. Phys. Condens. Matter., 2008, 20: 104209/1-7. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=852753.
10. Pfromm P. H. and Korost W. J. Accelerated physical ageing of thin glassy polymer films: evidence from gas transport measurements. Polymer, 36, no. 12: 2379–2387. https://doi.org/10.1016/0032-3861(95)97336-E.
11. Jonathan E. Bachman , Zachary P. Smith , Tao Li , Ting Xu and Jeffrey R. Long. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nature Mater, 2016, 15: 845–849. https://doi.org/10.1038/nmat4621.
12. Zhang C., Zhang M., Cao H. Zhang Z., Wang Z., Gao L., Ding M. Synthesis and properties of a novel isomeric polyimide/SiO2 hybrid material. Composites Sci. and Technology, 2007, 67: 380–389. https://doi.org/10.1016/j.compscitech.2006.09.014.
13. Qiu F., Zhou Y., Liu J., Zhang X. Preparation, morphological and thermal stability of polyimide/ silica hybrid material containing dye NBDPA. Dyes and Pigments, 2006, 71: 37 – 42. https://doi.org/10.1016/j.dyepig.2005.05.009.
14. Ahmad. Z., Mark J.E. Polyimide-ceramic hybrid composites by the sol-gel route. Chem. Mater, 2001, 13, No 10: 3320–3330. https://doi.org/10.1021/cm010175n.
15. Musto P., Ragosta G., Scarinizi G. Mascia L. Polyimide-silica nanocomposites: spectroscopic, morphological and mechanical investigation. Polymer, 2004, 45: 1697–1706. https://doi.org/10.1016/j.polymer.2003.12.044.
16. Tsai M.-H. and Whang W.-T. Low dielectric polyimide/poly(silsesquioxane)- like nanocomposite material. Polymer, 2001, 42: 4197–4207. https://doi.org/10.1016/S0032-3861(00)00805-3.
17. Byuller K.-U. Teplo- i termostoykie polimery. M.: Himiya, 1984: 1056.
18. Kozak N.V., Shantalii T.A., V.Lobko Eu., Dragan К.S., Klepko V.V. Molecular mobility in organic-inorganic composites based on polyimide with card substituents. Polym.J.(Ukr.), 2011, 33, no. 4: 356–360.
19. Shantalii T.A., Drahan E.S., Fomenko A.A., Klepko V.V. Synthesis and properties nanocomposites based on polyimide and tetraethoxysilane. Polymer.J. (Ukr.), 2009, 31, no. 4: 353–357. https://doi.org/10.1007/s10357-009-1671-9.
20. Kozak N.V. The method of nitroxyl probes for the study of molecular dynamics and heterogeneous structure of metal-containing polymers. Polym. J.(Ukr) 2009, 31: 207–213.
21. Toroptseva A.M., Belogorodskaya K.V., Bondarenko V.M. Laboratornyiy praktikum po himii i tehnologii vyisokomolekulyarnyih soedineniyyu. M.: Himiya, 1972: 415.
22. Kozak N.V., Shantalii T.A., Drahan K.S., Vorontsova L.O., Klepko V.V. Molecular mobility in the polyimide based organic-inorganic composites. Polymer. J. (Ukr.), 2015, 37, no. 3: 229–234. https://doi.org/10.15407/polymerj.37.03.229.
23. Kozak N.V., Shantalii T.A., Dragan K.C. The dynamics of the nitroxyl probe and the structural features of polyimide-containing nanocomposites. Polymer J (Ukr.), 2011, 33, no. 1 : 32–37.
24. Kozak N.V. , Shantalii T.A. Influence of the structure of an inorganic component on the permeability of low molecular probe into organo-inorganic polyimide nanocomposites based on tetraethoxysilane and methyltriethoxysilane. Voprosy khimii i khimicheskoi tekhnologii, 2020, no. 2: 67–72. DOI: 10.32434/0321-4095-2020-129-2-67-72.
25. Privalko V.P., Shantalii T.A., Privalkо E.G. Chapter 4 in : Science and Technology of Polymer-Composites: from Nano- to Micro-scale / Ed. by K Friedrich, S. Fakirov and Z. Zhang. Kluwer, 2005: 63–76.
26. Yunil Hwang, T. Inoue, Paul A. Wagner, M. D. Ediger. Molecular motion during physical aging in polystyrene: Investigation using probe reorientation. J. Polym. Sci., Polym.Phys. 2000, 38, no. 1: 68–79. https://doi.org/10.1002/(SICI)1099-0488(20000101)38:1<68::AID-POLB8>3.0.CO;2-2.
27. Shantalii T.A., Karpova I.L., Dragan K.S., Privalko E.G., Karaman V.M., Privalko V.P. Properties of an organosilicon nanophase generated in a poly(amide imide) matrix by the sol-gel technique. Polym. Adv. Technol., 2005, 16: 1–5. DOI:10.1002/pat.596.