2022 (1) 4

https://doi.org/10.15407/polymerj.44.01.053

Effects of the chemical nature, structure and molecular weight of polyurethane components on the spectral characteristics of the introduced Rhodamine 6G

L.F. Kosyanchuk,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: lkosyanchuk@ukr.net

ORCID: 0000-0002-3617-9538

V.I. Bezrodnyi,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: bezrod@iop.kiev.ua

ORCID: 0000-0001-9965-8707

O.I. Antonenko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: ant111@i.ua

ORCID: 0000-0002-6451-7499

T.V. Bezrodna,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: tomaalone@yahoo.com
ORCID: 0000-0003-1935-7475

S.D. Nesin,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: stasnesin@ukr.net

ORCID: 0000-0003-2162-3533

O.O. Brovko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: brovko@nas.gov.ua
ORCID: 0000-0003-0238-1137

A.M. Negriiyko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: amnegriyko@gmail.com
ORCID: 0000-0002-2954-5157

Polym. J., 2022, 44, no. 1: 53-60.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

Effects of the chemical nature, structure and molecular weight of oligoether and diisocyanate blocks of crosslinked polyurethanes on the spectral-luminescent properties of the xanthene dye Rhodamine 6G in polyurethanes, based on ether and ester oligodiols, aromatic and aliphatic diisocyanates have been studied. A number of polyurethanes were synthesized and investigated: polyurethane, based on oligooxypropylene glycol with a molecular weight of 1000, toluene diisocyanate, trimethylolpropane; polyurethane, based on oligodiethylene glycol adipate with a molecular weight of 1500, toluene diisocyanate, trimethylolpropane; and polyurethane, based on oligodiethylene glycol adipate with a molecular weight 1500, hexamethylene diisocyanate, trimethylolpropane. The analysis of absorption spectra showed that the monomer-dimer ratio of the dye in these polymers (the degree of dye association), as well as, the Stokes shift depended on the value of dielectric permeability – one of the main factors of the polymer polarity. Despite the overall efficient use of polyurethane matrices as active laser media in the development of dye lasers, the value of dielectric constant was found out to be taken into account at the polyurethane choosing. This parameter depends on the number of polar groups in the polymer, and it is determined by the molecular weight, nature and chemical structure of the polymer components. Among a number of selected polyurethanes, the best optical properties of Rhodamine 6G were observed in the polyurethane, based on oligooxypropylene glycol with a molecular weight of 1000, toluene diisocyanate and trimethylolpropane.

Keywords: dye, polyurethane, polarity, dielectric permeability.

References

1. Zemskij V.A., Kolesnikov Yu.L., Meshkovskij I.K. Fizika i tekhnika impul’snyh lazerov na krasitelyah. SPb.: SPbGU ITMO, 2005:176.
2. Ishchenko A.A., Grabchuk G.P. Physical and chemical problems of the creation of photostable converters of light energy on the basis of dyed polymers. Theor. Exp. Chem., 2009, 45: 143–167. https://doi.org/10.1007/s11237-009-9078-5.
3. Costela A., García-Moreno I., Agua D., García O., Sastre R. Solid state dye lasers: new materials based on silicon. Optics Journal, 2007, 1: 1–6. http://hdl.handle.net/10261/212150.
4. Kopylova T.N., Mayer G.V., Reznichenko A.V., Samsonova L.G., Svetlichnyi V.A., Dolotov M.S., Ponomarenko E.P., Tel’minov E.N., Filinov D.N., Sergeev A.K. Solid-state active media of tunable organic-compound lasers pumped with a laser. I. An XeCl laser, Applied Physics B (Lasers and Optics), 2001, 73, no. 1: 25–29. https://doi.org/10.1007/s003400100610.
5. Costelа А., Garcia-Moreno I., Agua D., García O., Sastre R. Highly photostable solid-state dye lasers based on silicon-modified organic matrices Journal of Applied Physics, 2007, 101, no. 7: 731–742. https://doi.org/10.1063/1.2359117.
6. Carborano C.M., Anedda A., Grandi S., Magistris A. Hybrid materials for solid-state dye laser application. J. Phys. Chem. B, 2006, 110, no. 26: 12932–12937. https://doi.org/10.1021/jp056448+.
7. Bondarev S.L., Knyukshto V.N., Stepuro V.I., Stupak A.P., Turban A.A. Fluorescence and Electronic Structure of the Laser Dye DCM in Solutions and in Polymethylmethacrylate. J. Appl. Spectroscopy, 2004, 71, no. 2: 194–201. https://doi.org/10.1023/B:JAPS.0000032874.60100.a0.
8. Al-ghamdi А.A., Mahrous E.M. Dye-Doped Polymer Laser Prepared by a Novel Laser Polymerization Method. International Journal of Electrochemical Science, 2011, 6: 5510–5520.
9. Barashkov N.N., Yaroslavtsev V.T., Murav’eva T.M., Bermas T.B. Spectral-luminescent, photochemical and lasing properties of laser dye-modified polymethylmethacrylate and epoxy polymers. J. Applied Spectroscopy, 1993, 58, no. 3–4: 386–393. https://doi.org/10.1007/BF00662699.
10. Kravchenko Ya.V., Manenkov A.A., Matyushin G.A. Highly efficient polymer lasers with xanthene-series dyes. Quantum Electronics, 1996, 26, no. 12: 1045–1046. https://doi.org/10.1070/QE1996v026n12ABEH000870.
11. Singha S., Kanetkarb V.R., Sridhara G., Muthuswamyb V., Rajab K. Solid-state polymeric dye, J. Luminescence, 2003, 101: 295–291. https://doi.org/10.1016/S0022-2313(02)00571-9.
12. Costela A., Florido F., Garcia-Moreno I., Duchowicz R., Amat-Guerri F., Figuera J.M., Sastre R. Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G. Appl. Phys. B, 1995, 60, no. 4: 383–389. https://doi.org/10.1007/BF01082275.
13. Al-shamiri H.A.S., Khedr M. A., Sabry M.M. Energi transfer and photostability of Rh-6G and Rh-B doped in polyacrylamide polymer. Optic C, 2019, 182: 716–726. https://doi.org/10.1016/j.ijleo.2019.01.082.
14. Deulin B.I., Filippov V.V. Active Laser Elements on Epoxypolyester. Aktivnyj lazernyj element na epoksipolimere. Agrotekhnika i energoobespechenie (Rus.), 2015, 3 no. 7: 66–69.
15. Korobkin Yu.V., Studenov V.B., Sidorov O.I. Active media for lasers based on colored epoxy and triazine-containing polymers. Technical Physics, 1997, 42, no. 10: 1176–1180. https://doi.org/10.1134/1.1258797.
16. Borneman R., Lemmer U., Thiel E. Continuous-wave solid-state dye laser. Optics Letters, 2006, 31, no. 11: 1669–1671. https://doi.org/10.1364/OL.31.001669.
17. Rahn M. D., King T. A. Comparison of laser performance of dye molecules in sol-gel, polycom, ormosil, and poly(methyl methacrylate) host media. Appl. Opt., 1995, 34: 8260–8271. https://doi.org/10.1364/AO.34.008260.
18. Bezrodnyi V.I., Ishchenko A.A. Active laser media based on coloured polyurethane. Quantum Electron., 2000, 30, no. 12: 1043–1048. https://doi.org/10.1070/ QE2000v030n12ABEH001862.
19. Nikolaev S.V., Pozhar V. V., Dzyubenko M. I. Emission characteristics of oxazine dyes incorporated in solid polyurethane matrices. Radiofizika i elektronika (Rus.), 2009, 14, no. 3: 358–365.
20. Nikolaev S. V., Pozhar V.V., Dzyubenko M.I., Nikolaev K.S. Solid active media for tunable lasers on the basis of dye-doped polyurethanes. Radiofizika i elektronika (Rus.), 2018, 23, no. 4: 95–107. https://doi.org/10.15407/rej2018.04.095.
21. Brannon J., Snyder C. Pulsed 532 nm laser wires tripping: Removal of dye doped polyurethane insulation. Appl. Phys. A, 1994, 59: 73–78. https://doi.org/10.1007/BF00348423.
22. Bezrodnyi V.I., Ishchenko A.A. High efficiency lasing of a dye-doped polymer laser with 1.06μm pumping. Appl. Phys. B, 2002, 73, no. 3: 283–285. https://doi.org/10.1007/s003400100646.
23. Bezrodnyi V.I., Ishchenko A.A., Kovtun Yu.P., Prostota Ya.A. Spectral and Generation Properties of a Nonsubstituted Analog of Rhodamine 101 in a Polyurethane Matrix. Journal of Applied Spectroscopy, 2004, 71, no. 1: 68–72. https://doi.org/10.1023/b:japs.0000025350.44202.41.
24. Kosyanchuk L., Bezrodnа T., Stratilat M., Menzheres G., Kozak N., Todosiichuk T. Peculiarities of interactions between 6-aminophenalenone dye and polyurethane matrix. J. Polym. Reserch, 2014, 21, no. 10: 564. https://doi.org/10.1007/s10965-014-0564-7.
25. Bezrodnyi V.I., Stratilat М.S., Kosyanchuk L.F., Negriyko A.M.. Klishevich G.V., Todosiichuk T.T. Spectral and photophysical properties of phenalenone dyes in aliphatic polyurethane matrix. Functional materials, 2015, 22, no. 2: 212–218. https://doi.org/10.15407/fm22.02.212.
26. Kosyanchuk L.F., Stratilat M.S., Kozak N.V., Bezrodna T.V. Effects of polyurethane polymer polarity on spectral and photophysical properties of phenalenone dyes. Dipole moment estimations for the ground and excited states. Polym.J.(Ukr.), 2015, 37, no. 4: 354–361. https://doi.org/10.15407/polymerj.37.04.354.
27. Bezrodnyi V., Stratilat М., Kosyanchuk L., Negriyko А., Klishevych G., Todosiichuk Т. Solvation effects on spectral and photophysical properties of phenalenone dyes in polyurethane polymers. J. Polym Research, 2016, 23, no. 6: 106. https://doi.org/10.1007/s10965-016-0987-4.
28. Bezrodnyi V.I., Negriyko А.М., Kosyanchuk L.F. Investigations of passive Q-switching in YAG:Nd lasers with Q-switches based on dye-doped polyurethane matrices. Reports of the National Academy of Sciences of Ukraine (Rus.), 2016, no. 9: 61–68. https://doi.org/10.15407/dopovidi2016.09.061.
29. Bezrodna T., Negryiko A., Bezrodnyi V., Kosyanchuk L. Dipole moments of phenalenone dyes determined in liquid and polymer polar media. J. Molecul. Liquids, 2018, 267: 89–95. https://doi.org/10.1016/j.molliq.2018.02.071.
30. Kosyanchuk L.F., Kozak N.V., Babkina N.V., Bezrodna T.V., Roshchin O.M., Bezrodnyi V.I., Antonenko O.I., Brovko O.O. Irradiation effects and beam strength in polyurethane materials for laser elements. Optical Materials, 2018, 85: 408–413. https://doi.org/10.1016/j.optmat.2018.09.010.
31. Stagg H.E. Method for the determination of isocyanates. Analyst, 1946. 71, no.849: 557–559. https://doi.org/10.1039/an9467100557.
32. Terekhin A.N. Fotonika molekul krasitelej. Leningrad: Nauka, 1967: 615.
33. Bondar M.V., Przhonskaya O.V., Tikhonov E.A. Photodecomposition of dyes in a polymer matrix under lasing conditions. Quantum. Electron. (Rus.), 1989, 19, no11: 1415–1418. https://doi.org/10.1070/QE1989v019n11ABEH009422.
34. Enciklopediya polimerov [T.1]. Sovetskaya enciklopediya, Moskva, 1972: 742.