2022 (1) 7
https://doi.org/10.15407/polymerj.44.01.076
Features of kinetics polymerization of methyl methacrylate initiated by hydroperoxides -N, N-diethyldithiocarbamates of copper (II) systems
А.V. Grekova,
Odessa National Medical University, 2, Valihovsky lane, Odessa, 65082, Ukraine,
ORCID: 0000-0002-6867-7064
P.A. Ivanchenko,
Odessa I.I. Mechnikov National University, 2, Dvoryanska street, Odessa, 65026, Ukraine,
ORCID: 0000-0001-8691-7845
Yа.F. Burdina,
Odessa National Medical University, 2, Valihovsky lane, Odessa, 65082, Ukraine,
ORCID: 0000-0003-2752-1378
Polym. J., 2022, 44, no. 1: 76-83.
Section: Polymer synthesis.
Language: Ukrainian.
Abstract:
Kinetic studies have shown that the use of systems based on secondary and tertiary hydroperoxides with N, N-diethyldithiocarbamate copper (II) can be used as effective sources of free radicals in the polymerization of methyl methacrylate in moderately low temperatures region (323–343 K). The introduction of an aromatic ring in molecules of hydroperoxides (ethylbenzene hydroperoxide and cumene hydroperoxide) increases the reactivity of the initiating system «hydroperoxide – complex» in comparison with tertiary butyl hydroperoxide. The shift of the gel effect to the region of high conversions during the polymerization of methyl methacrylate was noted. Such systems allow not only to accelerate the polymerization of the monomer, but also to conduct it in a controlled mode. H1 NMR spectroscopy showed that the formed polymers contained end dithiocarbamate fragments. Such groups are labile. It has been shown that the obtained and isolated in the presence of the initiating system tertiary hydroperoxide – N,N-diethyldithiocarbamate of copper(II) polymers are macroinitiators that can initiate a new portion of the monomer.
Keywords: initiating systems, dithiocarbamate, copper, peroxide, living radical polymerization.
References
1. Robert B. Grubbs, Robert H. Grubbs. 50th Anniversary Perspective: Living Polymerization – Emphasizing the Molecule in Macromolecules. Macromolecules, 2017, 50, 18: 6979–6997. https://doi.org/10.1021/acs.macromol.7b01440.
2. Kostas Parkatzidis, Hyun Suk Wang, Athina Anastasaki. Recent Developments and Future Challenges in Controlled Radical Polymerization. Chem, 2020, 6, 7: 1575–1588. https://doi.org/10.1016/j.chempr.2020.06.014.
3. Grekova A.V., Ivanchenko P.A, Seyfullina I.Y. N,N-dietilditiokarbamatyi 3d-metallov – katalizatoryi razlozheniya tretichnyih gidroperoksidov. Zhurnal prikladnoy himii, 2014, 87, 3: 323–327. https://doi.org/10.1134/S1070427214030070.
4. Ivanchenko P., Grekova A., SeyfullIna I. Kontrolovana radikalna polImerizatsIya stirolu za nayavnostI tretinnih peroksidIv ta N,N-dIetilditIokarbamatu Cu(II). Vіsnik Lvіvskogo natsіonalnogo unіversitetu, 2012, 53: 345–351. https://doi.org/10.1134/S0037446612020164.
5. Antonovskiy V. L., Hursan S. L. Fizicheskaya himiya organicheskih peroksidov. – M.: IKTs Akademkniga, 2003: 391. ISBN 5-94628-126-7.
6. Byirko V.M. Ditiokarbamatyi. – M.: Nauka, 1984: 342. В пер.
7. Zaremskiy Yu.M., Golubev V.B. Obratimoe ingibirovanie v radikalnoy polimerizatsii. Visokomolekulyarnyie soedineniya. Seriya С, 2001, 43, 9: 1698–1728.
8. Vinogradova V.G. Zverev A.N. Ingibirovanie polimerizatsii stirola helatami tyazhelyih metallov. Zhurnal obschey himii, 1993, 63, 5: 1041–1048.
9. Otsu Т., Yamashita K., Tsuda K. Synthesis, reactivity, and role of 4-vinylbenzyl N,Ndiethyldithiocarbamate as a monomer-iniferter in radical polymerization. Makromolecules, 1986, 19: 287–290. https://doi.org/10.1021/ma00156a007.
10. QinD.Q., Qin S.H., Qiu K.Y. Reverse atom transfer radical polymerization of vinyl monomers with Fe[SC(S)NEt2]3 alone as the catalyst. J. Polymer Science, 2001, 39, 19: 3464–3473. https://doi.org/10.1002/pola.1328.
11. Xiaoming Wan, Xiulin Zhu, Jian Zhu et. al. Synthesis of dithiocarbamate bearing azobenzene group and use for RAFT polymerization of vinyl monomers. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45, 14: 2886–2896. https://doi.org/10.1002/pola.22045.
12. John T. Lai, Ronald Shea. Controlled radical polymerization by carboxyl‐ and hydroxyl‐terminated dithiocarbamates and xanthates. J Polym Sci. Part A, 2006, 44, 14: 4298–4316. https://doi.org/10.1002/pola.21532.
13. Qin S.H., Qiu K.Y. A new polymerizable photoiniferter for preparing poly(methyl methacrylate)macromonomer. Eur. Polym. J., 2001, 37, 4: 711–717. https://doi.org/10.1016/S0014-3057(00)00158-0.
14. Matyjaszewski K., Tsarevsky N.V. Macromolecular Engineering by Atom Transfer. Radical Polymerization. J. Am. Chem. Soc., 2014, 136, 18: 6513–6533. https://doi.org/10.1021/ja408069v.
15. Dimitri Matioszek, Stéphane Mazières, Oleksii Brusylovets, Ching Yeh Lin, Michelle L. Coote, Mathias Destarac, Simon Harrisson. Experimental and Theoretical Comparison of Addition–Fragmentation Pathways of Diseleno- and Dithiocarbamate RAFT Agents. Macromolecules, 2019, 52, 9: 3376–3386. https://doi.org/10.1021/acs.macromol.9b00214.