2022 (3) 1
https://doi.org/10.15407/polymerj.44.03.165
МАХ PHASE (MXENE) IN POLYMER MATERIALS
K.O. Ivanenko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: k_ivanenko@i.ua
ORCID: 0000-0002-5637-9633
A.М. FAINLEIB,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: fainleib@i.ua
ORCID: 0000-0001-8658-4219
Polym. J., 2022, 44, no. 3: 165-187.
Section: Review.
Language: Ukrainian.
Abstract:
This article is a review of the Mn+1AXn phases (“MAX phases”, where n = 1, 2 or 3), their MXene derivatives and the reinforcement of polymers with these materials. The MAX phases are a class of hexagonal-structure ternary carbides and nitrides (“X”) of the transition metal (“M”) and the A-group element. The unique combination of chemical, physical, electrical and mechanical properties that combine the characteristics of metals and ceramics is of interest to researchers in the MAX phases. For example, MAX phases are typically resistant to oxidation and corrosion, elastic, but at the same time, they have high thermal and electrical conductivity and are machinable. These properties stem from an inherently nanolaminated crystal structure, with Mn+1Xn slabs intercalated with pure A-element layers. To date, more than 150 MAX phases have been synthesized. In 2011, a new family of 2D materials, called MXene, was synthesized, emphasizing the connection with the MAX phases and their dimension. Several approaches to the synthesis of MXene have been developed, including selective etching in a mixture of fluoride salts and various acids, non-aqueous etching solutions, halogens and molten salts, which allows the synthesis of new materials with better control over the chemical composition of their surface. The use of MAX phases and MXene for polymer reinforcement increases their thermal, electrical and mechanical properties. Thus, the addition of fillers increases the glass transition temperature by an average of 10%, bending strength by 30%, compressive strength by 70%, tensile strength up to 200%, microhardness by 40%, reduces friction coefficient and makes the composite material self-lubricating, and 1 % wt. MAX phases increases thermal conductivity by 23%, Young’s modulus increases. The use of composites as components of sensors, electromagnetic protection, wearable technologies, in current sources, in aerospace and military applications, etc. are proposed.
Key words: MAX phase, MXene, nanolaminate, oxygen-free ceramics, polymer, composite material, nanocomposite.
REFERENCES
1. Nowotny H., Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn. Prog. Solid State Chem., 1971, 5: 27–70. https://doi.org/10.1016/0079-6786(71)90016-1.
2. Jeitschko W., Nowotny H., Benesovsky F. Kohlenstoffhaltige ternäre Verbindungen (H-Phase). Monatshefte für Chemie, 1963, 94, no. 4: 672–676. https://doi.org/10.1007/BF00913068.
3. Jeitschko W., Nowotny H., Benesovsky F. Kohlenstoffhaltige ternäre Verbindungen (V-Ge-C, Nb-Ga-C, Ta-Ga-C, Ta-Ge-C, Cr-Ga-C und Cr-Ge-C). Monatshefte für Chemie, 1963, 94, no. 5: 844–850. https://doi.org/10.1007/BF00902358.
4. Jeitschko W., Nowotny H., Benesovsky F. Ti2AlN, eine Stickstoffhaltige H-Phase. Monatshefte für Chemie, 1963, 94, no.6: 1198–1200. https://doi.org/10.1007/BF00905710.
5. Jeitschko W., Nowotny H., Benesovsky F. Die H-Phasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC. Monatshefte für Chemie, 1964, 95, no.1: 178–179. https://doi.org/10.1007/BF00909264.
6. Jeitschko W., Holleck H., Nowotny H., Benesovsky F. Phasen mit aufgefülltem Ti2Ni-Typ. Monatshefte für Chemie, 1964, 95, no. 3: 1004–1006. https://doi.org/10.1007/BF00908814.
7. Jeitschko W., Nowotny H., Benesovsky F. Die H-phasen Ti2TlC, Ti2PbC, Nb2InC, Nb2SnC und TajGaC. Monatshefte für Chemie, 1964, 95, no. 2: 431–435. https://doi.org/10.1007/BF00901306.
8. Jeitschko W., Nowotny H., Benesovsky F. Die H-Phasen Ti2InC, Zr2InC, Hf2InC und Ti2GeC. Monatshefte für Chemie, 1963, 94, no. 6: 1201–1205. https://doi.org/10.1007/BF00905711.
9. Boiler H., Nowotny H. Röntgenographische Untersuchungen im System: Vanadin-Arsen-Kohlenstoff. Monatshefte für Chemie, 1966, 97, no. 4: 1053–1058. https://doi.org/10.1007/BF00903553.
10. Reiffenstein E., Nowotny H., Benesovsky F. Strukturchemische und magnetochemische Untersuchungen an Komplexcarbiden. Monatshefte für Chemie, 1966, 97, no. 5: 1428–1436. https://doi.org/10.1007/BF00902593.
11. Jeitschko W., Nowotny H. Die Kristallstruktur von Ti3SiC2 – ein neuer Komplexcarbid-Typ. Monatshefte für Chemie, 1967, 98, no. 2:329–337. https://doi.org/10.1007/BF00899949.
12. Wolfsgruber H., Nowotny H., Benesovsky F. Die Kristallstruktur von Ti3GeC2. Monatshefte für Chemie, 1967, 98, no. ? 2403–2405. https://doi.org/10.1007/BF00902438.
13. Beckmann O., Boiler H., Nowotny H. Neue H-Phasen. Monatshefte für Chemie, 1968, 99, no. 4: 1580–1583. https://doi.org/10.1007/BF00902709.
14. Boiler H., Nowotny H. Die Kristallstruktur von V2PC und V5P3N. Monatshefte für Chemie, 1968, 99, no. 2: 672–675. https://doi.org/10.1007/BF00901220.
15. Beckmann O., Boiler H., Nowotny H., Benesovsky F. Einige Komplexcarbide und-nitride in den Systemen Ti-{Zn, Cd, Hg}-{C, N} und Cr-Ga-N. Monatshefte für Chemie, 1969, 100, no. 6: 1465–1470. (1969). https://doi.org/10.1007/BF00900159.
16. Nowotny H., Windisch S. High Temperature Compounds. Annual Review of Materials Science, 1973, 3: 171–194.
17. Schuster J. C., Nowotny H., Vaccaro C. The Ternary Systems: Cr–Al–C, V–Al–C and Ti–Al–C and the Behavior of the H-phases (M2A1C). J. of Solid State Chem., 1980, 32: 213–219. https://doi.org/10.1016/0022-4596(80)90569-1.
18. Barsoum M.W. The Mn+1AXn: a new class of solids; thermodynamically stable nanolaminates. Prog. Solid St. Chem., 2000, 28: 201–281. https://doi.org/10.1016/S0079-6786(00)00006-6.
19. Eklund P., Beckers M., Jansson U., Högberg H., Hultman L. The Mn+1AXn phases: materials science and thin-film processing. Thin Solid Films, 2010, 518, no. 8: 1851–1878. https://doi.org/10.1016/j.tsf.2009.07.184.
20. Pietzka M.A., Schuster J.C. Summary of Constitution Data of the System Al–C–Ti. J. Phase Equilibria, 1994, 15, no. 4: 392–400. https://doi.org/10.1007/BF02647559
21. Pietzka M. A., Schuster J. C. The Ternary Boundary Phases of the Quaternary System Ti-Al-C-N. In Book: Concerted Action on Materials Science, Leuven Proceedings, Part A, Commission of the European Communities, Brussels, Belgium, 1992.
22. Barsoum M. W., Farber L., Levin I., Procopio A., El-Raghy T., Berner A. HRTEM of Ti4AlN3; or Ti3Al2N2 Revisited. J. Amer. Cer. Soc., 1999, 82: 2545–2547. https://doi.org/10.1111/j.1151-2916.1999.tb02117.x.
23. Procopio A. T., El-Raghy T., Barsoum M. W. Synthesis of Ti4AlN3 and Phase Equilibria in the Ti-Al-N System. Met. Mater. Trans. A, 2000, 31, no. 2: 373–378. https://doi.org/10.1007/s11661-000-0273-1.
24. Procopio A. T., Barsoum M. W., El-Raghy T. Characterization of Ti4AlN3. Met. Mater. Trans. A, 2000, 31, no. 2: 333–337. https://doi.org/10.1007/s11661-000-0268-y.
25. Aryal S., Sakidja R., Barsoum M.W., Ching W.-Y. A genomic approach to the stability, elastic, and electronic properties of the MAX phases, Phys. Status Solidi B, 2014, 251, no. 8: 1480–1497. https://doi.org/10.1002/pssb.201451226.
26. Farber L., Levin I., Barsoum M. W., El-Raghy T., Tzenov T. High-resolution transmission electron microscopy of some Tin+1AXn compounds (N=1, 2; A=Al or Si; X=C or N). Journal of Applied Physics, 1999. 86, no.5: 2540–2543. https://doi.org/10.1063/1.371089.
27. Rawn C.J., Barsoum M.W., El-Raghy T., Procipio A., Hoffmann C.M., Hubbard C.R. Structure of Ti4AlN3 – a layered Mn+1AXn nitride. Materials Research Bulletin, 2000. 35: 1785– 1796. https://doi.org/10.1016/S0025-5408(00)00383-4.
28. https://en.wikipedia.org/wiki/MAX_phases.
29. Barsoum M.W., El-Raghy T. The MAX Phases: Unique New Carbide and Nitride Materials. American Scientist, 2001, 89, no. 4: 334–343. https://doi.org/10.1511/2001.28.736.
30. El-Raghy T., Zavaliangos A., Barsoum M.W., Kalidindi S.R. Damage Mechanisms around Hardness Indentations in Ti3SiC2. J. Am. Ceram. Soc., 1997, 80, no. 2: 513–516. https://doi.org/10.1111/j.1151-2916.1997.tb02861.x.
31. Barsoum M.W., Farber L., El-Raghy T. Dislocations, Kink Bands, and Room-Temperature Plasticity of Ti3SiC2. Metallurgical and materials transactions A. 1999, 30: 1727–1738. https://doi.org/10.1007/s11661-999-0172-z.
32. Kooi B.J., Poppen R.J., Carvalho N.J.M., De Hosson J.Th.M., Barsoum M.W. Ti3SiC2: A damage tolerant ceramic studied with nanoindentations and transmission electron microscopy. Acta Materialia, 2003, 51: 2859–2872. doi:10.1016/S1359-6454(03)00091-0.
33. Prikhna T.A., Dub S.N., Starostina A.V., Karpets M.V., Cabiosh T., Chartier P. Mechanical properties of materials based on MAX phases of the Ti-Al-C system. Journal of Superhard Materials, 2012, 34, no. 2: 102–109. https://doi.org/10.3103/S1063457612020049.
34. Magnuson M., Tengdelius L., Greczynski G., Eriksson F,. Jensen J., Lu J., Samuelsson M., Eklund P., Hultman L., Hogberg H. Compositional dependence of epitaxial Tin+1SiCn MAX-phase thin films grown from a Ti3SiC2 compound target. J. Vac. Sci. Technol. A. 2019, 37, no. 2: 021506. doi:10.1116/1.5065468. ISSN 0734-2101.
35. Yin X., Chen K., Zhou H., Ning X. Combustion Synthesis of Ti3SiC2/TiC Composites from Elemental Powders under High-Gravity Conditions. Journal of the American Ceramic Society, 2010, 93, no. 8: 2182–2187. doi:10.1111/j.1551-2916.2010.03714.x.
36. Hanaor D.A.H., Hu L., Kan W.H., Proust G., Foley M., Karaman I., Radovic M. Compressive performance and crack propagation in Al alloy/Ti2AlC composites. Materials Science and Engineering: A, 2016, 672: 247–256. https://doi.org/10.1016/j.msea.2016.06.073.
37. Arunajatesan S., Carim A.H. Synthesis of Titanium Silicon Carbide. Journal of the American Ceramic Society, 1995, 78, no. 3: 667–672. doi:10.1111/j.1151-2916.1995.tb08230.x.
38. Gao N. F., Miyamoto Y., Zhang D. Dense Ti3SiC2 prepared by reactive HIP. Journal of Materials Science, 1999, 34, no. 18: 4385–4392. doi:10.1023/A:1004664500254.
39. Li S.-B., Zhai H.-X. Synthesis and Reaction Mechanism of Ti3SiC2 by Mechanical Alloying of Elemental Ti, Si, and C Powders. Journal of the American Ceramic Society, 2005, 88, no. 8: 2092–2098. doi:10.1111/j.1551-2916.2005.00417.x.
40. Dash A., Vaßen R., Guillon O., Gonzalez-Julian J. Molten salt shielded synthesis of oxidation prone materials in air. Nature Materials. 2019, 18, no. 5: 465–470. doi:10.1038/s41563-019-0328-1.
41. Li M., Li Y.-B., Luo K., Lu J., Eklund P., Persson P., Rosen J., Hultman L., Du S.-Y. Synthesis of Novel MAX Phase Ti3ZnC2 via A-site-element-substitution Approach. Journal of Inorganic Materials, 2019, 34, no. 1: 60–64. doi:10.15541/jim20180377.
42. Li M. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. Journal of the American Chemical Society. 2019, 141, no. 11: 4730–4737. doi:10.1021/jacs.9b00574.
43. Li Y., Li M., Lu J., Ma B., Wang Z., Cheong L.-Z., Luo K., Zha X., Chen K., Persson P.O.Å., Hultman L., Eklund P., Shen C., Wang Q., Xue J., Du S., Huang Z., Chai Z., Huang Q. Single-Atom-Thick Active Layers Realized in Nanolaminated Ti3(AlxCu1–x)C2 and Its Artificial Enzyme Behavior. ACS Nano, 2019, 13, no. 8: 9198–9205. https://doi.org/10.1021/acsnano.9b03530.
44. Ding H., Li Y., Lu J., Luo K., Chen K., Li M., Persson P. O.Å., Hultman L., Eklund P., Du S., Huang Z., Chai Z., Wang H., Huang P., Huang Q. Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts. Materials Research Letters, 2019, 7, no. 12: 510–516. DOI: 10.1080/21663831.2019.1672822.
45. Ivchenko V.I., Kosolapova T.Y. Conditions of Preparation of Ternary Ti-C-Al alloy Powders. Soviet Powder Metallurgy and Metal Ceramics, 1975, 14, no. 6: 431–433. https://doi.org/10.1007/BF00823497.
46. Ivchenko V. I., Lesnaya M. I., Nemchenko V. F., Kosolapova T. Y. Preparartion and Some Properties of the Ternary Compound Ti2AlN. Soviet Powder Metall Met Ceram, 1976, 15, no. 4: 293–295. https://doi.org/10.1007/BF01178200.
47. Ivchenko V. I., Lesnaya M. I., Nemchenko V. F., Kosolapova T. Y. Some Physical Properties of Ternary Compounds in the System Ti-Al-C. Soviet Powder Metallurgy and Metal Ceramics, 1976, 15, no. 5: 367–369. doi: 10.1007/bf00806472.
48. Ivchenko V. I., Kosolapova T. Y. Abrasive Properties of the Ternary Compounds in the System Ti-Al-C and Ti-Al-N. Soviet Powder Metall Met Ceram, 1976, 15, no. 8: 626–628. https://doi.org/10.1007/BF01159451.
49. Nickl J. J., Schweitzer K. K., Luxenburg P. Gasphasenabscheidung im Systeme Ti-C-Si. Journal of Less Common Metals, 1972. 26, no. 3: 335–353. https://doi.org/10.1016/0022-5088(72)90083-5.
50. Gray V. Ti3SiC2 and Ti3AlC2 Single Crystal Elastic Shear Modulus: Investigation via Inelastic Neutron Scattering and Computer Simulation. Dissertation in fulfilment of the academic degree Doctor of Philosophy. Faculty of Engineering and Built Environment, University of Newcastle. 2013.
51. Prikhna T.A., Dub S.N., Savchuk Ya.M., Petrusha I.A., Starostina A.V., Melnikov V.S., Kozyrev A.V., Nagorny P.A., Katrusha A.N., Firstov S.A., Ivanova I.I., Karpets M.V., Joulain A., Rabier J., Cobioch T., Tolmacheva G.N., Schmidt Ch. Sintering of MAX materials. Abstracts for International Conference on Sintering, IX ISC-2009, September 7–11, 2009, Kiev, Ukraine.
52. Starostina A.V., Prikhna T.A., Karpets M.V., Dub S.N., Chartier P., Cabiosh T., Sverdun V.B., Moshchil’ V.E., Kozyrev A.V. Synthesis of ternary compounds of the Ti-Al-C system at high pressures and temperatures. J. Superhard Mater, 2011, 33, no. 5: 307. https://doi.org/10.3103/S1063457611050042.
53. Prikhna T. A., Starostina A. V., Petrusha I. A., Ivakhnenko S. A., Borimskii A. I., Filatov Yu. D., Loshak M. G., Serga M. A., Tkach V. N., Turkevich V. Z., Sverdun V. B., Klimenko S. A., Turkevich D. V., Dub S. N., Basyuk T. V., Karpets M. V., Moshchil’ V. E., Kozyrev A. V., Il’nitskaya G. D., Kovylyaev V. V., Lizkendorf D., Cabiosh T., Chartier P. Studies of the oxidation stability, mechanical characteristics of materials based on MAX phases of the Ti–Al–(C, N) systems, and of the possibility of their use as tool bonds and materials for polishing. Journal of Superhard Materials, 2014, 36, no. 1: 9–17. https://doi.org/10.3103/S106345761401002X.
54. Prikhna T., Cabiosh T., Gawalek W., Ostash O., Lizkendorf D., Dub S., Loshak M, Sverdun V., Chartier P., Basyuk T., Moshchil V., Kozyrev A., Karpets M., Kovylaev V., Starostina A., Turkevich D. Study of the thermal stability and mechanical characteristics of MAX phases of Ti-Al-C(N) system and their solid solutions. Advances in Science and Technology, 2014, 89: 123–128. https://doi.org/10.4028/www.scientific.net/AST.89.123.
55. Novikov M.V., Prikhna T.O., Kozyriev A.V., Starostina O.V., Sverdun V.B., Basiuk T.V., Moschil V.Ye., Serhiienko N.V., Cabiosh T., Chartier P. Process for the production of MAX-material. Ukrainian Patent 87477, February 10, 2014.
56. Prikhna T.O., Novikov M.V., Kozyriev A.V., Moschil V.Ye., Basiuk T.V., Starostina O.V., Sverdun V.B., Serhiienko N.V., Cabiosh T., Chartier P. Process for compaction of ceramic materials based on MAX-phases under high pressure. Ukrainian Patent 91034, June 25, 2014.
57. Novikov M.V., Prikhna T.O., Kozyrev A.V., Starostina O.V., Sverdun V.B., Basiuk T.V., Moschil V.Ye., Serhiienko N.V., Cabioch’ T., Chartier P. Process for the production of MAX-material based on tertiary titanium and aluminium carbides. Ukrainian Patent 109174, July 27, 2015.
58. Ostash O.P., Prihna T.O., Ivasyshyn A.D., Podhurska V.Ya., Basuk T.V., Vasyliiev O.D., Brodnikovskyy E.M. Material for manufacturing connection elements of the solid oxide fuel cells. Ukrainian Patent 111082, March 25, 2016.
59. Ivasyshyn А., Ostash O., Prikhna T., Podhurs’ka V., Basyuk T. Influence of Technological Media on the Mechanical and Physical Properties of Materials for Fuel Cells. Materials Science, 2015, 51: 149–157. https://doi.org/10.1007/s11003-015-9822-z.
60. Ivasyshyn A., Ostash O., Prikhna T., Podhurska V., Basyuk T. Oxidation Resistance of Materials Based on Ti3AlC2 Nanolaminate at 600 °C in Air. Nanoscale Research Letters, 2016, 11: 358. https://doi.org/10.1186/s11671-016-1571-x.
61. Ivasyshyn A.D., Ostash O.P., Prikhna T.O., Podhurska V.Y., Basyuk T.V. () Oxidation Resistance of Materials Based on Ti3AlC2 Nanolaminate at 6°C in Air. Springer Proceedings in Physics, 2016, 183: 551–557. https://doi.org/10.1007/978-3-319-30737-4_45.
62. Podhurska V., Vasyliv B., Ivasyshyn A., Ostash O., Vasylyev O., Prikhna T., Sverdun V., Brodnikovskyi Y. Behaviour of Solid Oxide Fuel Cell Materials in Technological Environments. French-Ukrainian Journal of Chemistry, 2018, 6: 115. https://doi.org/10.17721/fujcV6I1P115-127.
63. Vovk R.V., Khadzhai G.Ya., Prikhna T.A., Gevorkyan E.S., Kislitsa M.V., Soloviev A.L., Goulatis I.L., Chroneos A. Charge and heat transfer of the Ti3AlC2 MAX phase. Journal of Materials Science: Materials in Electronics. 2018, no. 29: 11478–11481. https://doi.org/10.1007/s10854-018-9242-6.
64. Prikhna T., Ostash O., Sverdun V., Karpets M., Zimych T., Ivasyshin A., Cabioch’T., Chartier P., Dub S., Javorska L., Podgurska V., Figel P., Cyboroń J., Moshchil V., Kovylaev V., Ponomaryov S., Romaka V., Serbenyuk T., Starostina A. Presence of oxygen in Ti-Al-C MAX phases-based materials and their stability in oxidizing environment at elevated temperatures. Acta Physica Polonica A. 2018, 133, no. 4: 789–793. https://doi.org/10.12693/APhysPolA.133.789.
65. Boyko Yu.I., Bogdanov V.V., Vovk R.V., Gevorkyan E.S., Kolesnichenko V.A., Korshak V.F., Prikhna T.A. Thermal and crack resistance of ceramics based on the MAX phase Ti3AlC2. Funct. Mater. 2018, 25, (4): 708–712. https://doi.org/10.15407/fm25.04.708.
66. Prikhna Т.О., Podhurs’ka V.Ya., Оstash О.P., Vasyliv B.D., Sverdun V.B., Karpets’ М.V., Serbenyuk Т.B. Influence of the technology of production of composites based on the max phases of titanium on the process of wear in contact with copper. Part 1. Two-stage technology. Materials Science, 2019, 54, no. 4: 589–595. https://doi.org/10.1007/s11003-019-00222-1.
67. Prikhna Т.О., Podhurs’ka V.Ya., Оstash О.P., Vasyliv B.D., Sverdun V.B., Karpets’ М.V., Serbenyuk Т.B. Influence of the Technology of Production of Composites Based on the MAX Phases of Titanium on the Process of Wear in Contact with Copper. Part 2. Single-Stage Technology. Materials Science, Vol. 55, No. 1, July 2019. P. 1–8. https://doi.org/10.1007/s11003-019-00222-1.
68. Gogotsi G.A., Galenko V.I., Prikhna T.A. Local fracture of nanolaminates: edge chipping test. Strength of Materials, 2020, 52, no. 3: 381–385. https://doi.org/10.1007/s11223-020-00188-5.
69. Karpinos B. S., Kulish V. M., Prikhna T. O. Thermostressed state of a nozzle vane from max phase ceramics. Strength of Materials, 2020, 52, no. 5: 738–745. https://doi.org/10.1007/s11223-020-00227-1.
70. Kuprin A.S., Prikhna T.A., Reshetnyak E.N., Bortnitskaya M.A., Kolodiy I.V., Belous V.A., Dub S.N., Ilchenko A.V., Sverdun V.B. Coating Deposition by Ion-plasma Sputtering of MAX Phase Ti2AlC Target. Journal of nano- and electronic physics, 2020, 12, no 5: 05011(6pp). DOI: 10.21272/jnep.12(5).05011.
71. Оstash О.P., Prikhna T.O., Kuprin O.S., Podhurs’ka V.Ya., Sverdun V.B., Vasyliv B.D. Method of making thin-walled connecting cells of solid oxide fuel cells. Ukrainian Patent 121831, July 27, 2020.
72. Dub S. N., Tyurin A. I., Prikhna T. A. Creep and viscoelasticity of Ti3AlC2 MAX-phase at room temperature. Journal of Superhard Materials, 2020, 42, no. 5: 12–22. https://doi.org/10.3103/S1063457620050147.
73. Kirian I.M., Voynash V.Z., Lakhnik A.M., Marunyak A.V., Kochelab Yе.V., Rud A.D. Synthesis of Ti3AlC2 MAX-Phase with Different Content of B2O3 Additives, Metallophysics and Advanced Technologies, 2019, 41, no. 10: 1273–1281. https://doi.org/10.15407/mfint.41.10.1273.
74. Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials, 2011, 23, no. 37: 4248–4253. https://doi.org/10.1002/adma.201102306.
75. Naguib M., Mashtalir O., Carle J., Presser V., Lu J., Hultman L., Gogotsi Y., Barsoum M.W. Two-dimensional transition metal carbides. ACS Nano. 2012, 6, no. 2: 1322–1331. DOI: 10.1021/nn204153h.
76. Naguib M., Halim J., Lu J., Cook K.M., Hultman L., Gogotsi Yu., Barsoum M.W. New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries. J. Am. Chem. Soc. 2013, 135: 15966−15969. doi.org/10.1021/ja405735d.
77. Naguib M., Mochalin V.N., Barsoum M.W., Gogotsi Yu. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26: 992–1005. DOI: 10.1002/adma.201304138.
78. Li Z., Wang L., Sun D., Zhang Y., Liu B., Hu Q., Zhou A. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Materials Science and Engineering: B, 2015, 191: 33–40. https://doi.org/10.1016/j.mseb.2014.10.009.
79. Sun D., Wang M., Li Z., Fan G., Fan L.-Z., Zhou A. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochemistry Communications, 2014, 47: 80–83, https://doi.org/10.1016/j.elecom.2014.07.026.
80. Ghidiu M., Lukatskaya M., Zhao M.-Q., Gogotsi Yu., Barsoum M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516: 78–81. https://doi.org/10.1038/nature13970.
81. Halim J., Lukatskaya M.R., Cook K.M., Lu J., Smith C.R., Näslund L.-Å., May S.J., Hultman L., Gogotsi Yu., Eklund P., Barsoum M.W. Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. Chem. Mater. 2014, 26, no. 7: 2374–2381. https://doi.org/10.1021/cm500641a.
82. Ghidiu M., Naguib M., Shi C., Mashtalir O., Pan L.M., Zhang B., Yang J., Gogotsi Y., Billinge S.J.L., Barsoum M.W. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem. Commun. 2014, 50: 9517–9520. https://doi.org/10.1039/C4CC03366C.
83. Karlsson L.H., Birch J., Halim J., Barsoum M.W., P. Persson O.Å. Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets. Nano Lett. 2015, 15, no. 8: 4955–4960. https://doi.org/10.1021/acs.nanolett.5b00737.
84. Naguib M., Unocic R.R., Armstrong B.L., Nanda J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans. 2015, 44: 9353–9358. https://doi.org/10.1039/C5DT01247C.
85. Wang L., Zhang H., Wang B., Shen C., Zhang C., Hu Q., Zhou A., Liu B. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett. 2016, 12: 702–710. https://doi.org/10.1007/s13391-016-6088-z.
86. Sun W., Shah S.A., Chen Y., Tan Z., Gao H., Habib T., Radovic M., Green M.J. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A, 2017, 5: 21663–21668. https://doi.org/10.1039/C7TA05574A.
87. Anasori B., Gogotsi Y. 2D Metal Carbides and Nitrides (MXenes). Springer, Cham, Switzerland 2019. ISBN: 978-3-030-19025-5. https://doi.org/10.1007/978-3-030-19026-2.
88. Chen X., Zhao Y., Li L., Wang Y., Wang J., Xiong J., Du S., Zhang P., Shi X., Yu J. MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polymer Reviews, 2021, 61, no. 1: 80–115. DOI: 10.1080/15583724.2020.1729179.
89. Kausar A. Polymer/MXene nanocomposite–a new age for advanced materials. Polymer-Plastics Technology and Materials, 2021, 60, no. 13: 1377–1392. DOI: 10.1080/25740881.2021.1906901.
90. Sreenilayam S.P., Ahad I.Ul, Nicolosi V., Brabazon D. MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43: 99–131. https://doi.org/10.1016/j.mattod.2020.10.025.
91. Naguib M., Barsoum M.W., Gogotsi Yu. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 33, no. 39: 2103393. DOI: 10.1002/adma.202103393.
92. Abdolhosseinzadeh S., Jiang X., Zhang H., Qiu J., Zhang C. (John). Perspectives on solution processing of two-dimensional MXenes. Materials Today, 2021, 48: 214–240, https://doi.org/10.1016/j.mattod.2021.02.010.
93. Gogotsi Y., Huang Q. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano, 2021, 15, no. 4: 5775–5780. https://doi.org/10.1021/acsnano.1c03161.
94. Zhang X., Xu J., Wang H., Zhang J., Yan H., Pan B., Zhou J., Xie Y. Ultrathin Nanosheets of MAX Phases with Enhanced Thermal and Mechanical Properties in Polymeric Compositions: Ti3Si0.75Al0.25C2, Angew. Chem. Int. Ed. 2013, 52: 4361–4365. DOI: 10.1002/anie.201300285.
95. Derradji M., Henniche A., Wang J., Dayo A.Q., Ouyang J.-hu, Liu W.-bin, Medjahed A. High Performance Nanocomposites from Ti3SiC2 MAX Phase and Phthalonitrile Resin, Polymer Composites, 2018, 39, no. 10: 3705–3711. https://doi.org/10.1002/pc.24401.
96. Henniche A., Derradji M., Wang J., Liu W.-bin, Ouyang J.-hu, Medjahed A. High-performance polymeric nanocomposites from phthalonitrile resin and silane surface–modified Ti3AlC2 MAX phase. High Performance Polymers, 2018, 30, no. 4: 427–436. https://doi.org/10.1177/0954008317699678.
97. Derradji M., Trache D., Henniche A., Zegaoui A., Medjahed A., Tarchoun A.F., Belgacemi R. On the preparation and properties investigations of highly performant MXene (Ti3C2(OH)2) nanosheets-reinforced phthalonitrile nanocomposites. Advanced Composites Letters, 2019, 28: 1–6. DOI: 10.1177/2633366X19890621.
98. Ting R.Y., Keller T.M., Price T.R., Poranski C.F. Characterization of the Cure of Diether-Linked Phthalonitrile Resins, Chapter 26. In book: Cyclopolymerization and Polymers with Chain-Ring Structures. Eds.: G.B. Butler, J.E. Kresta. Am. Chem. Sos. Symp. Ser., 1982, 195: 337–350. ISBN: 9780841207318. DOI: 10.1021/bk-1982-0195.ch026.
99. Keller T.M. Phthalonitrile-based high temperature resin. J. Polym. Sci.: Part A Polym. Chem., 1988, 26, no.12: 3199–3212. https://doi.org/10.1002/pola.1988.080261207.
100. Sastri S.B., Keller T.M. Phthalonitrile polymers: Cure behavior and properties. J. Polym. Sci. Part A Polym. Chem., 2000, 37, no. 13: 2105–2111. https://doi.org/10.1002/(SICI)1099-0518(19990701)37:13<2105::AID-POLA25>3.0.CO;2-A.
101. Derradji M., Ramdani N., Gong L.D., Wang J., Xu X.D., Lin Z.W., Henniche A., Liu W.B. Mechanical, thermal, and UV-shielding behavior of silane surface modified ZnO-reinforced phthalonitrile nanocomposites. Polym. Adv. Technol., 2016, 27, no. 7: 882–888. https://doi.org/10.1002/pat.3744.
102. Derradji M., Ramdani N., Zhang T., Wang J., Gong L.D., Xu X.D., Lin Z.W., Henniche A., Rahoma H.K.S., Liu W.B. Effect of silane surface modified titania nanoparticles on the thermal, mechanical, and corrosion protective properties of a bisphenol-A based phthalonitrile resin. Prog. Org. Coat., 2016, 90: 34–43. https://doi.org/10.1016/j.porgcoat.2015.09.021.
103. Sastri S.B., Armistead J.P., Keller T.M. Phthalonitrile-carbon fiber composites. Polym. Compos., 1996, 17, no. 6: 816–822. https://doi.org/10.1002/pc.10674.
104. Sastri S.B., Armistead J.P., Keller T.M. Phthalonitrile-glass fabric composites. Polym. Compos., 1997, 18, no. 1: 48–54. https://doi.org/10.1002/pc.10260.
105. Keller T.M., Dominguez D.D. High temperature resorcinol-based phthalonitrile polymer. Polymer, 2005, 46, no. 13: 4614–4618. https://doi.org/10.1016/j.polymer.2005.03.068.
106. Zhang T., Wang J., Derradji M., Ramdani N., Wang H., Lin Z.W., Liu W.B., Synthesis, curing kinetics and thermal properties of a novel self-promoted fluorene-based bisphthalonitrile monomer. Thermochim. Acta., 2015, 602: 22–29. https://doi.org/10.1016/j.tca.2015.01.005.
107. Lee H., Neville K. Handbook of Epoxy Resins. New York: McGraw-Hill, 1967: 960. ISBN 978-0070369979.
108. Handbook of Benzoxazine Resins / Eds Hatsuo Ishida and Tarek Agag. Elsevier, Amsterdam, Netherlands, 2011: 661. ISBN 9780444537904.
109. Laskoski M., Neal A., Schear M.B., Keller T.M., Ricks-Laskoski H.L., Saab A.P. Oligomeric aliphatic–aromatic ether containing phthalonitrile resins. J. Polym. Sci. Part A: Polym. Chem., 2015, 53, no. 18: 2186–2191. https://doi.org/10.1002/pola.27659.
110. Laskoski M., Schear M.B., Neal A., Dominguez D.D., Ricks-Laskoski H.L., Hervey J. Improved synthesis and properties of aryl ether-based oligomeric phthalonitrile resins and polymers. Polymer, 2015, 67: 185–191. https://doi.org/10.1016/j.polymer.2015.04.071.
111. Bershtein V., Fainleib A., Yakushev P., Kirilenko D., Gusakova K., Markina D., Melnychuk O., Ryzhov V. High temperature phthalonitrile nanocomposites with silicon-based nanoparticles of different nature and surface modification: structure, dynamics, properties. Polymer, 2019, 165: 39–54. https://doi.org/10.1016/j.polymer.2019.01.020.
112. Bershtein V., Fainleib A., Yakushev P., Kirilenko D., Gusakova K., Markina D., Melnychuk O., Ryzhov V. High-temperature hybrid phthalonitrile / amino-MMT nanocomposites: synthesis, structure, properties. eXPRESS Polym. Lett., 2019, 13, no. 7: 656–672. https://doi.org/10.3144/expresspolymlett.2019.55.
113. Bershtein V.A., Fainleib A.M., Yakushev P.N., Kirilenko D.A., Melnychuk O.G. Super-heat-resistant polymer nanocomposites on the base of heterocyclic networks: structure and properties. Physics of the Solid State, 2019, 61, no. 8: 1494–1501. https://doi.org/10.1134/S1063783419080080.
114. Fainleib A. Heat-resistant polymer composite materials on a base of heterocyclic matrices. Polymer Journal (Ukraine), 2020, 42, no. 2: 71–84. https://doi.org/10.15407/polymerj.42.02.071.
115. Derradji M., Ramdani N., Zhang T., Wang J., Feng T.T., Wang H., Liu W.B. Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles. Mater. Des., 2015, 71: 48–55. https://doi.org/10.1016/j.matdes.2015.02.001.
116. Derradji M., Ramdani N., Zhang T., Wang J., Lin Z.W., Yang M., Xu X.D., Liu W.B. High thermal and thermomechanical properties obtained by reinforcing a bisphenol-A based phthalonitrile resin with silicon nitride nanoparticles. Mater. Lett., 2015, 149: 81–84. https://doi.org/10.1016/j.matlet.2015.02.122.
117. Derradji M., Ramdani N., Zhang T., Wang J., Gong L.D., Xu X.D., Lin Z.W., Henniche A., Rahoma H.K.S., Liu W.B. Thermal and mechanical properties enhancements obtained by reinforcing a bisphenol-a based phthalonitrile resin with silane surface-modified alumina nanoparticles/ Polym. Compos., 2015, 38, no. 8: 1549–1558. https://doi.org/10.1002/pc.23722.
118. Shan S., Chen X., Xi Z., Yu X., Qu X., Zhang Q. The effect of nitrile-functionalized nano-aluminum oxide on the thermomechanical properties and toughness of phthalonitrile resin. High Perform. Polym., 2017, 29: 113–123. https://doi.org/10.1177/0954008316631593.
119. Derradji M., Feng T., Wang H., Ramdani N., Zhang T., Wang J., Henniche A., Liu W.B. New oligomeric containing aliphatic moiety phthalonitrile resins: their mechanical and thermal properties in presence of silane surface-modified zirconia nanoparticles. Iran. Polym. J., 2016, 25, no. 6: 503–514. https://doi.org/10.1007/s13726-016-0442-8.
120. Derradji M., Wang J., Liu W.B. High performance ceramic-based phthalonitrile micro and nanocomposites. Mater. Lett., 2016, 182: 380–385. https://doi.org/10.1016/j.matlet.2016.06.110.
121. Kajohnchaiyagual J., Jubsilp C., Dueramae I., Rimdusit S. Thermal and mechanical properties enhancement obtained in highly filled alumina-polybenzoxazine composites. Polym. Compos., 2014, 35, no. 11: 2269–2279. https://doi.org/10.1002/pc.22892.
122. Barsoum M.W., El-Raghy T.J. Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2. Americ. Ceram. Soc., 1996, 79, no. 7: 1953–1956. https://doi.org/10.1111/j.1151-2916.1996.tb08018.x.
123. Mahesh K.V., Balanand S., Raimond R., Mohamed A.P., Ananthakumar S. Polyaryletherketone polymer nanocomposite engineered with nanolaminated Ti3SiC2 ceramic fillers. Mater. Des., 2014, 63: 360–367. https://doi.org/10.1016/j.matdes.2014.06.034.
124. Vaisakh S.S., Mahesh K.V., Balanand S., Metz R., Hassanzadeh M., Ananthakumar S. MAX phase ternary carbide derived 2-D ceramic nanostructures [CDCN] as chemically interactive functional fillers for damage tolerant epoxy polymer nanocomposites. RSC Adv., 2015, 5, 16521–16531. https://doi.org/10.1039/C4RA16518G.
125. Johnson R.R., “Tribology Of Novel Multifunctional MAX Phase Composites” (2014). Theses and Dissertations. 1668. https://commons.und.edu/theses/1668.
126. Gupta S., Riyad M. F., Ghosh S., Dunnigan R. Novel solid-lubricant materials for multifunctional applications. SPE Plastics Research Online’s, 2016. DOI: 10.2417/spepro.006444.
127. Gupta S., Riyad M.F. Synthesis and tribological behavior of novel UHMWPE-Ti3SiC2 composites. Polym Compos., 2018, 39, no.1: 254–262. https://doi.org/10.1002/pc.23925.
128. Ghosh S. К.. On The Of Novel Multifunctional Max Reinforced Polymers (MRPS) Matrix Composites (2016) .Theses and Dissertations. 2019. https://commons.und.edu/theses/2019.
129. Hall K., Dey M., Matzke C., Gupta S.. Synthesis and characterization of novel polymer matrix composites reinforced with max phases (Ti3SiC2, Ti3AlC2, and Cr2AlC) or MoAlB by fused deposition modeling. International Journal of Ceramic Engineering & Science. 2019, 1, no. 3: 144–154. https://doi.org/10.1002/ces2.10020.
130. Huang Z., Wang S., Kota S., Pan Q., Barsoum M.W., Li C.Y. Structure and crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. Polymer, 2016, 102: 119–126 https://doi.org/10.1016/j.polymer.2016.09.011.
131. Zou Y., Fang L., Chen T., Sun M., Lu C., Xu Z. Near-Infrared Light and Solar Light Activated Self-Healing Epoxy Coating having Enhanced Properties Using MXene Flakes as Multifunctional Fillers. Polymers, 2018, 10, no. 5: 474. DOI: 10.3390/polym10050474.
132. Chen X., Zhao Y., Li L., Wang Y., Wang J., Xiong J., Du S., Zhang P., Shi X., Yu J. MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polymer Reviews, 2021, 61, no. 1: 80−115. DOI: 10.1080/15583724.2020.1729179.
133. Gao L., Li C., Huang W., Mei S., Lin H., Ou Q., Zhang Y., Guo J., Zhang F., Xu S., Zhang H. MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. Chem. Mater. 2020, 32: 1703−1747. https://dx.doi.org/10.1021/acs.chemmater.9b04408.
134. Khan R., Andreescu S. MXenes-Based Bioanalytical Sensors: Design, Characterization, and Applications. Sensors, 2020, 20, no. 18: 5434; doi:10.3390/s20185434.
135. Sun R., Zhang H.-B., Liu J., Xie X., Yang R., Li., Y., Hong S., Yu Z.-Z. Highly Conductive Transition Metal Carbide/Carbonitride (MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2017, 27: 1702807. https://doi.org/10.1002/adfm.201702807.
136. Zhang Y.Z., Lee K.H., Anjum D.H., Sougrat R., Jiang Q., Kim H., Alshareef H.N. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 2018, 4, No. eaat0098. https://doi.org/10.1126/sciadv.aat0098.
137. Boota M., Anasori B., Voigt C., Zhao M.Q., Barsoum M.W., Gogotsi Y. Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene). Adv. Mater. 2016, 28: 1517−1522. https://doi.org/10.1002/adma.201504705.
138. Qin L., Tao Q., Liu X., Fahlman M., Halim J., Persson P.O.Å., Rosen J., Zhang F. Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy 2019, 60: 734−742. https://doi.org/10.1016/j.nanoen.2019.04.002.
139. Qin L., Tao Q., El Ghazaly A., Fernandez-Rodriguez J., Persson P.O.Å., Rosen J., Zhang F. High-Performance Ultrathin Flexible Solid-State Supercapacitors Based on Solution Processable Mo1.33C MXene and PEDOT:PSS. Adv. Funct. Mater. 2018, 28: 1703808. https://doi.org/10.1002/adfm.201703808.
140. Zhou Z., Liu J., Zhang X., Tian D., Zhan Z., Lu C. Ultrathin MXene/Calcium Alginate Aerogel Film for High-Performance Electromagnetic Interference Shielding. Adv. Mater. Interfaces 2019, 6: 1802040. https://doi.org/10.1002/admi.201802040.
141. Wang Q.-W., Zhang H.-B., Liu J., Zhao S., Xie X., Liu L., Yang R., Koratkar N., Yu Z.-Z. Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. Adv. Funct. Mater. 2019, 29: 1806819. https://doi.org/10.1002/adfm.201806819.
142. Cao W.T., Chen F.F., Zhu Y.J., Zhang Y.G., Jiang Y.Y., Ma M.G., Chen F. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. ACS Nano 2018, 12: 4583−4593. https://doi.org/10.1021/acsnano.8b00997.
143. Jiang C., Wu C., Li X., Yao Y., Lan L., Zhao F., Ye Z., Ying Y., Ping J. All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 2019, 59: 268−276. https://doi.org/10.1016/j.nanoen.2019.02.052.