2022 (3) 2
https://doi.org/10.15407/polymerj.44.03.188
Ultraviolet protection and damping ability of transparent polyurethane materials with the components of different chemical nature
N.V. BABKINA,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine
e-mail: nabab1906@gmail.com
ORCID: 0000-0002-1803-0887
L.O. VORONTSOVA,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine
e-mail: la.voronzova@gmail.com
ORCID: 0000-0002-3792-9409
O.I. ANTONENKO,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine
e-mail: antoks2870@gmail.com
ORCID: 0000-0002-6451-7499
L.F. KOSYANCHUK,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: lkosyanchuk@ukr.net,
ORCID: 0000-0002-3617-9538
T.D. IGNATOVA,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: taya.ihnatova@gmail.com
ORCID: 0000-0001-8189-5683
L.V. KOBRINA,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine
e-mail: kobrina.larisa@gmail.com
ORCID: 0000-0001-6801-0801
О.О. BROVKO,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine
e-mail: brovko@nas.gov.ua
ORCID: 0000-0003-0238-1137
Polym. J., 2022, 44, no. 3: 188-197.
Section: Review.
Language: English.
Abstract:
This article is devoted to the study of the influence of the chemical nature of the components of polyurethane matrices (PU) on their optical and viscoelastic properties in order to obtain polymer materials that combine several different functional properties: high transparency, effective UV protection and high damping ability. PU matrices with different chemical structures of diisocyanate (aliphatic (hexamethylene diisocyanate) or aromatic (toluylene diisocyanate)) and oligodiol (oligoether (oligooxypropylene glycol) or oligoester (oligodiethylene glycol adipate)) blocks were synthesized. PU matrices with different molecular weights of ester (800 and 1500) were synthesized too. It was established that all PU matrices have a fairly high (~90 %) transmission coefficient in the range of visible wavelengths and UV blocking. However, the range of UV absorption significantly depends on the PU components. Matrices based on aliphatic diisocyanate absorb UV up to 250–280 nm. The UV absorption of PU matrices based on aromatic diisocyanate, regardless of the nature of their oligoester component and its molecular weight, undergoes a shift to the long-wavelength region – up to 300–400 nm, which is due to the presence of aromatic rings. For PUs with an aromatic component, the highest absorption in the UV region is observed for PUs based on oligoesters, which is explained by the greater absorption ability of ester groups relative to ether ones. It was found that PU matrix based on oligoester has better elastic properties, but the PU matrix based on oligoether is characterized by a wider temperature range of effective damping. The replacement of aliphatic diisocyanate with an aromatic one shifts the area of effective damping of PU material towards positive temperatures. Therefore, by changing the nature of PU components, as well as the molecular weight of the PU oligoester component, it is possible to obtain transparent materials with a wide temperature range of effective damping in combination with high protection against UV radiation.
Key words: polyurethane, ultraviolet protection, damping ability, viscoelastic properties, transparency.
REFERENCES
1. Engels H.-W., Pirkl H.-G., Albers R., Albach R.W., Krause J., Hoffmann A., Casselmann H., Dormish J. Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Today’s Challenges. Angew. Chem. Intern. Ed., 2013, 52, no. 36: 9422–9441. https://doi.org/10.1002/anie.201302766.
2. Polyurethane Chemistry: Renewable Polyols and Isocyanates. Ram K. Gupta, Pawan K. Kahol (Eds). ACS Symposium Series, 1380. American Chemical Society: Washington, DC, 2021, 447 p. ISBN13: 9780841298408.
3. Kojio K., Nozaki S., Takahara A., Yamasaki S. Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: a review. J. Polym. Res., 2020, 27, no. 6: 140. https://doi.org/10.1007/s10965-020-02090-9.
4. Nakamura M., Aoki Y., Enna G., Oguro K., Wada H. Polyurethane damping material. J. Elastomers and Plastics, 2015, 47, no. 6: 515–522. https://doi.org/10.1177/0095244314526739.
5. Chen H., Zhou H.J., Liu D.J., Li Y.T.. The Effect of Polyester Structures on the Damping Property of Polyurethane Elastomers. Adv. Mat. Res., 2012, 581–582: 710–714. https://doi.org/10.4028/www.scientific.net/AMR.581-582.710.
6. Čulin J. Interpenetrating polymer network composites containing polyurethanes designed for vibration damping. Polimery, 2016, 61, no. 3: 159–165. https://dx.doi.org/10.14314/polimery.2016.159.
7. Bais A.F., Bernhard G., McKenzie R.L., Aucamp P.J., Young P.J., Ilyas M., Jöckel P., Deushi M. Ozone–climate interactions and effects on solar ultraviolet radiation. Photochem. Photobiol. Sci., 2019, 18, no. 3: 602–640. https://doi.org/10.1039/C8PP90059K.
8. Andrady A.L., Pandey K.K., Heikkila A.M. Interactive effects of solar UV radiation and climate change on material damage. Photochem. Photobiol. Sci., 2019, 18, no. 3: 804–825. https://doi.org/10.1039/C8PP90065E.
9. Calvo M.E., Castro Smirnov J.R., Míguez H. Novel Approaches to Flexible Visible Transparent Hybrid Films for Ultraviolet Protection. J. Polym. Sci., Part B: Polym. Phys., 2012, 50, no. 14: 945−956. https://doi.org/10.1002/polb.23087.
10. Jagajeevan Raj B.M., Nithin K.S., Shilpa K.N., Sachhidananda S., Sandeep S., Siddaramaiah H., Pushpalatha K. Mechanically flexible and visibly transparent polymer-based nanocomposites for UV-protective applications, Chapter 5. In book: Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications. Eds.: N.K. Subramani, H. Siddaramaiah, J.H. Lee. Elsevier, 2021: 117–134. https://doi.org/10.1016/B978-0-12-818484-4.00003-3
11. Zhang S., Zhang D., Bai H., Ming W. ZnO Nanoparticles Coated with Amphiphilic Polyurethane for Transparent Polyurethane Nanocomposites with Enhanced Mechanical and UV-Shielding Performance. ACS Appl. Nano Mater., 2020, 3, no. 1: 59−67. https://doi.org/10.1021/acsanm.9b01540.
12. Stroea L., Chibac-Scutaru A.-L., Melinte V. Aliphatic Polyurethane Elastomers Quaternized with Silane-Functionalized TiO2 Nanoparticles with UV-Shielding Features. Polymers, 2021, 13, no. 8: 1318 (1–17). https://doi.org/10.3390/polym13081318.
13. Huang R., Du X., Wang H., Cheng X., Du Z. Highly stretchable polyurethane coating based on functionalized cerium oxide nanoparticles for anti-corrosive/UV protection. J. Appl. Polym. Sci., 2022, 139, no. 15: art. 51927. https://doi.org/10.1002/app.51927.
14. Rahman M.M., Suleiman R., Zahir M.H., Helal A., Kumar A.M., Haq M.B. Multi Self-Healable UV Shielding Polyurethane/CeO2 Protective Coating: The Effect of Low-Molecular-Weight Polyols. Polymers, 2020, 12, no. 9: art. 1947. https://doi.org/10.3390/polym12091947.
15. Diffey B.L. Sources and measurement of ultraviolet radiation. Methods, 2002, 28, no. 1: 4–13. https://doi.org/10.1016/S1046-2023(02)00204-9.
16. Stagg H.E. Method for the determination of isocyanates. Analyst, 1946, 71, no. 849: 557–559. https://doi.org/10.1039/AN9467100557.
17. Yadav L.D.S. Ultraviolet (UV) and visible spectroscopy, Chapter 2. In book: Organic spectroscopy. Dordrecht: Springer, 2005: 7–51. https://doi.org/10.1007/978-1-4020-2575-4_2.
18 Workman J.Jr. The Handbook of Organic Compounds, Three-Volume Set: NIR, IR, R, and UV-Vis Spectra Featuring Polymers and Surfactants. Academic Press, 2000: 1493. ISBN-10: 0127635602.
19. Weise N.K., Bertocchi M.J., Wynne J.H., Long I., Mera A.E. High performance vibrational damping poly(urethane) coatings: Blending ‘soft’ macrodiols for improved mechanical stability under weathering. Prog. Org. Coat., 2019, 136: art. 105240. https://doi.org/10.1016/j.porgcoat.2019.105240.
20. Berns R.S. Billmeyer and Saltzman’s Principles of Color Technology, 4th Edition. Wiley, 2019: 272. ISBN: 978-1-119-36668-3.
21. Zhang Y., Zhang J. Protection materials: ultraviolet shielding, high energy visible light filtering and visible light transparency PETG composite films. Plast. Rub. Comp., 2015, 44, no. 9: 368–375, http:/doi.org/10.1179/1743289815Y.0000000032.
22. Gu P., Zhang M., Liu Z., Zhang J. Transparent EVA film with spectrally selective blocking capacity of ultraviolet and high-energy visible light. Plast. Rub. Comp., 2022. https://doi.org/10.1080/14658011.2021.2024646.
23. Nielson L.E. Mechanical Properties of Polymer and Composites. NY: M. Dekker, 1974: 556. ISBN 10 0824761837
24. Ferry J.D. Viscoelastic properties of polymers, 3th edition. Wiley, 1980: 662. ISBN 0-471-04894-1.
25. Hourston D.J., Schafer F.-U. Polyurethane/polystyrene one-shot interpenetrating polymer networks with good damping ability: Transition broadening through crosslinking, internetwork grafting and compatibilization. Polym. Adv. Techn., 1996, 7, no. 4: 273–280. https://doi.org/10.1002/(SICI)1099-1581(199604)7:4<273::AID-PAT520>3.0.CO;2-Q.
26. Babkina N.V., Lipatov Yu.S., Alekseeva T.T. Damping properties of composites based on interpenetrating polymer networks formed in the presence of compatibilizing additives. Mech. Comp. Mat., 2006, 42, no. 4: 385–392. https://doi.org/10.1007 / s11029-006-0048-x.
27. Wang S.H., Zawadzki S., Akcelrud L. Morphology and Damping Behavior of Polyurethane/PMMA Simaltaneous Interpenetrating Networks. Mat. Res., 2001, 4, no. 1: 27–33. http://doi.org/10.1590/S1516-14392001000100007.
28. Kercha Yu.Yu. Fizicheskaya himiya poliuretanov. Kyiv: Nauk. Dumka, 1970: 234.
29. Irusta L., Fernandez-Berridi M.J. Aromatic oly(ether-urethanes): effect of the polyol molecular weight on the photochemical behavior. Polymer, 1999, 40: 4821–4831. https://doi.org/10.1016/S0032-3861(98)00708-3.
30. Irusta L., Fernandez-Berridi M.J. Photooxidative behaviour of segmented aliphatic polyurethanes. Pol. Degr. Stab., 1999, 63: no. 1: 113–119. https://doi.org/10.1016/S0141-3910(98)00073-1.