2022 (4) 1
https://doi.org/10.15407/polymerj.44.04.245
MODIFICATION OF MONTMORILLONITE FOR OBTAINING NANOCOMPOSITES BASED ON POLAR POLYMERS
А.N. Gonchar,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: lexgon@ukr.net
ORCID: 0000-0001-8356-9283
Yu.V. Savelyev,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0003-3356-9087
Polym. J., 2022, 44, no. 4: 245-254.
Section: Review.
Language: Ukrainian.
Abstract:
This review covers almost all known categories of compounds used to modify montmorillonite to obtain nanocomposites based on polar polymers. Organic modifiers such as quaternary ammonium ions, quaternary phosphonium ions, amino acids and other organic compounds are commonly used to modify montmorillonite (MMT). The main directions of scientific research in this field are considered, namely the modification of MMT with ammonium surfactants, phosphonium surfactants, amino acids and nonionic surfactants. The review used 67 sources related to peer-reviewed publications, mostly from the last 10-15 years. The largest number of publications devoted to the modification of MMT was published in the period from 2004 to 2016. Nanocomposites based on epoxy resins are especially widely presented in the literature. Epoxy-based materials have been used for many years as convenient matrices for dispersing MMT due to the advantages of properties of the obtained polymer nanocomposites, such as mechanical strength, non-flammability and thermal stability. The methods of surface modification of MMT with organic modifiers considered in the article are a powerful tool for the production of polymer nanocomposite materials based on polar polymers. Amine modification of MMT allowed the formation of highly effective materials, in particular epoxy/MMT materials. These nanocomposites have demonstrated extraordinary material properties compared to virgin polymers and can therefore be used as an alternative to conventional materials such as steel and wood, reducing the cost and weight of products. Nanocomposites based on polar polymers occupy an important place among all polymer nanocomposites as modern materials used in the aerospace, automotive and electrical industries.
Key words: organic modifiers, montmorillonite, nanocomposite.
REFERENCES
1. Huang Y. F., Wang P. C., Lee J. H., Lee J. Y., Liu H. J. Crystallization and Thermal Properties of PLLA–PEG 600/Clay Nanocomposites. Polym. -Plast. Technol. Engineer. 2015, 54: 433–439. https://doi.org/10.1080/03602559.2014.935404.
2. Esteki B., Garmabi H., Saeb M. R., Hoffmann T. The crystallinity behavior of polyethylene/clay nanocomposites under the influence of water-assisted melt blending. Polym. -Plast. Technol. Engineer. 2013, 52: 1626–1636. https://doi.org/10.1080/03602559.2013.832853.
3. Gul S., Kausar A. and Muhammad B. Research Progress on Properties and Applications of Polymer/Clay Nanocomposite. Polym. -Plast. Technol. Engineer. 2015. https://doi.org/10.1080/03602559.2015.1098699.
4. Fan Y., Lu Y. C., Lu Y., Zhang X., Lou J., Tang C., Shinozaki D.M. Orientation effect of clay platelets in transfer molded polymer nanocomposites. Polym. -Plast. Technol. Engineer. 2013, 52: 964–973. https://doi.org/10.1080/03602559.2013.763369.
5. Pircheraghi G., Nazockdast H., Salehi M. The Effects of Chemical Bonding of Nanoclay Surface Modifier and Compatibilizer on Microstructure Development and Rheological Properties of PP/PP-g-MA/Diamine Modified Nanoclay. Polym.-Plast. Technol. Engineer. 2011, 50: 1109–1117. https://doi.org/10.1080/03602559.2011.566243.
6. Liu C., Tang T., Wang D., Huang B. In Situ Ethylene Homopolymerization and Copolymerization Catalyzed by Zirconocene Catalysts Entrapped inside Functionalized Montmorillonite. J. Polym. Sci. 2003, 41: 2187–2196. https://doi.org/10.1002/pola.10764.
7. Wu J., Lerner M. Structural, thermal, and electrical characterization of layered nanocomposites derived from Na-montmorillonite and polyethers. Chem. Mater. 1993, 5: 835–838. https://doi.org/10.1021/cm00030a019.
8. Abdallah W., Yilmazer U. Novel thermally stable organo-montmorillonites from phosphonium and imidazolium surfactants. Thermochim. Acta. 2011, 525: 129–140. https://doi.org/10.1016/j.tca.2011.07.028.
9. Mittal V. Modification of montmorillonites with thermally stable phosphonium cations and comparison with alkylammonium montmorillonites. Appl. Clay Sci. 2012, 56: 103–109. https://doi.org/10.1016/j.clay.2011.11.029.
10. Ezquerro C.S., Ric G.I. Characterization of montmorillonites modified with organic divalent phosphonium cations. Appl. Clay Sci. 2015, 111: 1–9. https://doi.org/10.1016/j.clay.2015.03.022.
11. Zhu T. T., Zhou C. H., Kabwe F. B.,Wu Q. Q., Li C. S., Zhang J.R. Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Applied Clay Science, 2019, 169 : 48–66. https://doi.org/10.1016/j.clay.2018.12.006.
12. Acisli O., Karaca S., & Gurses A. Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (mt) from aqueous solutions. Applied Clay Science 2017, 142: 90–99. https://doi.org/10.1016/j.clay.2016.12.009.
13. Abenojar J., Martínez M.A., Pantoja M., Velasco F., Del Real J.C. Epoxy composite reinforced with nano and micro SiC particles: curing kinetics and mechanical properties, J. Adhes. 2012, 88: 418–434. https://doi.org/10.1080/00218464.2012.660396.
14. Kadlec P., Polansky R. Influence of Surface Modification of Montmorillonite on Dielectric Properties of Epoxy-based Composites. Prog. of the 2020 3RD IEEE International Conferense on Dielectrics (ICD 2020), 2020: 249–252. https://doi.org/10.1109/ICD46958.2020.9341969.
15. Brown J.M., Curliss D., Vaia R.A. Thermoset-layered silicate nanocomposites. quaternary ammonium montmorillonite with primary diamine cured epoxies. Chem. Mater. 2000, 12: 3376–3384. https://doi.org/10.1021/cm000477+.
16. Xidas P.I., Triantafyllidis K.S. Effect of the type of alkylammonium ion clay modifier on the structure and thermal/mechanical properties of glassy and rubbery epoxy–clay nanocomposites, Eur. Polym. J. 2010, 46: 404–417. https://doi.org/10.1016/j.eurpolymj.2009.11.004.
17. Bergaya F., Lagaly G. Surface modification of clay minerals. Appl. Clay Sci. 2001, 19: 1–3. https://doi.org/10.1016/S0169-1317(01)00063-1.
18. Shi H., Lan T., Pinnavaia T. Interfacial Effects on the Reinforcement Properties of Polymer-Organoclay Nanocomposites. Chem. Mater. 1996, 8: 1584–1587. https://doi.org/10.1021/cm960227m.
19. Hasegawa N., Kawasumi M., Kato M., Usuki A., Okada A. Preparation and Mechanical Properties of Polypropylene–Clay Hybrids Using a Maleic Anhydride-Modified Polypropylene Oligomer. J. Appl. Polym. Sci. 1998, 67: 87–92. https://doi.org/10.1002/(SICI)1097-4628(19980103)67:1<87::AID-APP10>3.0.CO;2-2.
20. Okamoto M., Morita S. Synthesis and structure of smectic clay/poly(methyl methacrylate) and Clay/polystyrene nanocomposites via in situ intercalative polymerization. Polymer. 2000, 41: 3887–3890. https://doi.org/10.1016/S0032-3861(99)00655-2.
21. Ray S., Maiti P., Okamoto M. New Polylactide/Layered Silicate Nanocomposites. Preparation, Characterization, and Properties. Macromolecules. 2002, 35: 3104–3110. https://doi.org/10.1021/ma011613e.
22. Becker O., Varley R., Simon G. Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer. 2002, 43: 4365–4373. https://doi.org/10.1016/S0032-3861(02)00269-0.
23. Hasegawa N., Okamoto H., Kato M., Usuki A., Sato N. Nylon 6/Na– montmorillonite nanocomposites prepared by compounding Nylon 6 with Na–montmorillonite slurry. Polymer. 2003, 44: 2933–2937. https://doi.org/10.1016/S0032-3861(03)00215-5.
24. Miyagawa H., Rich M., Drzal L. Amine-Cured Epoxy/Clay Nanocomposites. Processing and Chemical Characterization. J. Polym. Sci. 2004, 42: 4384–4390. https://doi.org/10.1002/polb.20288.
25. Zhang H., Wang Y. Study on Flammability of Montmorillonite/Styrene- Butadiene Rubber (SBR) Nanocomposites. J. Appl. Polym. Sci. 2005, 97: 844–849. https://doi.org/10.1002/app.21797
26. Sonawane S.; Chaudhari P. Combined effect of ultrasound and nanoclay on adsorption of phenol. Ultrasonics Sonochemistry. 2008, 15: 1033–1037. https://doi.org/10.1016/j.ultsonch.2008.03.006.
27. Ganguly A., Bhowmick A.K. Effect of polar modification on morphology and properties of styrene-(ethylene-co-butylene)-styrene triblock copolymer and its montmorillonite clay-based nanocomposites. J. Mater. Sci. 2009, 44: 903–918. https://doi.org/10.1007/s10853-008-3183-z.
28. Nakas G.I., Kaynak C. Use of Different Alkylammonium Salts in Clay Surface Modification for Epoxy-Based Nanocomposites. Polym. Compos. 2009: 357–363. https://doi.org/10.1002/pc.20667.
29. Delbem M.F., Valera T.S. Modification of a Brazilian smectite clay with different quaternary ammonium salts. Quim. Nova. 2010, 33: 309–315. https://doi.org/10.1590/S0100-40422010000200015.
30. Fujimori A., Kusaka J., Nomura R. Formation and Structure of Organized Molecular Films for Organo-Modified Montmorillonite and Mixed Monolayer Behavior With Poly(L-lactide). Polym. Engineer. Sci. 2011: 1099–1107. https://doi.org/10.1002/pen.21912.
31. Pucci A., Liuzzo V. Polymerizable ionic liquids for the preparation of polystyrene/clay composites. Polym. Int. 2012, 61: 426–433. https://doi.org/10.1002/pi.4146.
32. Ornaghi F.G., Pistor V. Thermoplastic polyurethane synthesis with modified montmorillonite prepared by torque rheometry: Investigation of morphological, thermal, chemical, and physical properties. Appl. Polym. Sci. 2015: 1–10. https://doi.org/10.1002/app.42640.
33. Jaeger D.A., Zelenin A.K. Alkyltris(hydroxymethyl)phosphonium Halide Surfactants. Langmuir. 2001, 17: 2545–2547. https://doi.org/10.1021/la001543p.
34. Abdelmoaty A.S., Hanna A. Modification of montmorillonite and its effect on the thermal stability of PP/APP. INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2022, 29, no. 2: 149–156.
35. Xie W., Xie R., Pan W., Hunter D., Koene B., Tan L., Vaia R. J. Thermal stability of quaternary phosphonium modified montmorillonites. Chem. Mater. 2002, 14: 4837–4845. https://doi.org/10.1021/cm020705v.
36. Abdallah W., Yilmazer U. Polyamide 66 Nanocomposites Based on Organoclays Treated with Thermally Stable Phosphonium Salts. J. Appl. Polym. Sci. 2013, 127: 772–783. https://doi.org/10.1002/app.37788.
37. Calderon J. U., Lennox B., Kamal M. R. Thermally stable phosphonium montmorillonite organoclays. Appl. Clay Sci. 2008, 40: 90–98. https://doi.org/10.1016/j.clay.2007.08.004.
38. Okamoto K., Ray S., Okamoto M. New Poly(butylene succinate)/Layered Silicate Nanocomposites Effect of Organically Modified Layered Silicates on Structure, Properties, Melt Rheology, and Biodegradability. J. Polymer Sci. 2003, 41: 3160–3172. https://doi.org/10.1002/polb.10708.
39. Cai Y., Hu Y. Morphology, Thermal and Mechanical Properties of Poly (Styrene- Acrylonitrile) (SAN)/Clay Nanocomposites from Organic-Modified Montmorillonite. Polym.-Plast. Technol. Engineer. 2007, 46: 541–548. https://doi.org/10.1080/03602550701298655.
40. Jitendra N., Vikrant S. Study on thermal and mechanical properties of PBT/clay nanocomposites. J. Polym. Mater. 2008, 25: 1–14.
41. Naveau E., Calberg C. Supercritical CO2 as an efficient medium for layered silicate organomodification: Preparation of thermally stable organoclays and dispersion in polyamide 6. Polymer. 2009, 50: 1438–1446. https://doi.org/10.1016/j.polymer.2009.01.040.
42. Makhoukhi B., Didi M.A. Diphosphonium ion-exchanged montmorillonite for Telon dye removal from aqueous media. Appl. Clay Science. 2010, 50: 354–361. https://doi.org/10.1016/j.clay.2010.08.026.
43. Livi S., Duchet-Rumeau J., Gérard J. Supercritical CO2-ionic liquid mixtures for modification of organoclays. J. Coll. Interfac. Sci. 2011, 353: 225–230. https://doi.org/10.1016/j.jcis.2010.09.049.
44. Mittal V. Modification of montmorillonites with thermally stable phosphonium cations and comparison with alkylammonium montmorillonites. Appl. Clay Science. 2012, 56: 103–109. https://doi.org/10.1016/j.clay.2011.11.029.
45. Seyidoglu T., Yilmazer U. Production of Modified Clays and Their Use in Polypropylene-Based Nanocomposites. J. Appl. Polym. Sci. 2013: 1257–1267. https://doi.org/10.1002/app.37757.
46. Zhang R., Hong S.M., Koo1 C.M. Flame Retardancy and Mechanical Properties of Polyamide 6 with Melamine Polyphosphate and Ionic Liquid Surfactant-Treated Montmorillonite. J. Appl. Polym. Sci. 2014: 1–8. https://doi.org/10.1002/app.40648.
47. Ezquerro C.S., Ric G.I., Miñana C. Characterization of montmorillonites modified with organic divalent phosphonium cations. Appl. Clay Science. 2015, 111: 1–9. https://doi.org/10.1016/j.clay.2015.03.022.
48. Mallakpour S., Dinari M. Synthesis and Properties of Biodegradable Poly(vinylalcohol)/Organo-nanoclay Bionanocomposites. J. Polym. Environ. 2012, 20: 732–740. https://doi.org/10.1007/s10924-012-0432-7.
49. Kima G.-M., Leeb D.-H., Hoffmannc B. Infuence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polymer 2001, 42: 1095–1100. https://doi.org/10.1016/S0032-3861(00)00468-7.
50. Katti K.S., Ambre A., Peterka N. Use of unnatural amino acids for design of novel organomodified clays as components of nanocomposite biomaterials. Phil. Trans. R. Soc. 2010, 368: 1963–1980. https://doi.org/10.1098/rsta.2010.0008.
51. Mallakpour S., Dinari M. Biomodification of Cloisite Na1 with L-Methionine Amino Acid and Preparation of Poly(vinyl alcohol)/Organoclay Nanocomposite Films. J. Appl. Polym. Sci. 2012, 124: 4322–4330. https://doi.org/10.1002/app.35540.
52. Katti D.R., Sharma A., Ambre A., Katti K.S. Molecular interactions in biomineralized hydroxyapatite amino acid modified nanoclay: In silico design of bone biomaterials. Mater. Sci. Engineer. 2015, 46: 207–217. https://doi.org/10.1016/j.msec.2014.07.057.
53. Shen Y.H. Preparations of organobentonite using nonionic surfactants. Chemosphere. 2001, 44: 989–995. https://doi.org/10.1016/S0045-6535(00)00564-6.
54. Hu X., Tian S., Zhan S., Zhu J. Adsorption of switchable surfactant mixed with common nonionic surfactant on montmorillonite: Mechanisms and arrangement models. Applied Clay Science, 2017, 146: 140–146. https://doi.org/10.1016/j.clay.2017.05.025.
55. Andrunik M., Bajda T. Modification of Bentonite with Cationic and Nonionic Surfactants: Structural and Textural Features. Materials, 2019, 12, no. 22 : 3772. https://doi.org/10.3390/ma12223772.
56. Huiqiong Y., Pan Zh., Xiuqiong Ch., Chaoling B, Rui Zh., Jisen H, Chang L, Qiang L. Preparation and characterization of octyl phenyl polyoxyethylene ether modified organo-montmorillonite for ibuprofen controlled release. Applied Clay Science, 2020, 189: 105519. https://doi.org/10.1016/j.clay.2020.105519.
57. Gemeay A.H., El-Sherbiny A.S., Zaki A.B. Adsorption and kinetic studies of the intercalation of some organic compounds onto Na+-montmorillonite. J. Coll. Interfac. Sci. 2002, 245: 116–125. https://doi.org/10.1006/jcis.2001.7989.
58. Yao H., Zhu J., Morgan A.B., Wilkie C.A. Crown ether-modified clays and their polystyrene nanocomposites. Polym. Eng. Sci. 2002, 42: 1808–1814. https://doi.org/10.1002/pen.11073.
59. Bottino F., Fragalà I., Malandrino G., Orestano A., Pollicino A. Polystyrene claynanocomposites prepared with polymerizable imidazolium surfactants. Macromolecule. 2003: 229–230. https://doi.org/10.1002/marc.200300054.
60. Awad W.H., Gilman J.W., Nyden M., Harris Jr., R.H., Sutto T.E., Callahan J., Truvole P.C., DeLong H.C., Fox D.M. Thermal degradation studies of alkylimidazolium salts and their application in nanocomposites. Thermochim. Acta. 2004, 409: 3–11. https://doi.org/10.1016/S0040-6031(03)00334-4.
61. Akyüz S., Akyüz T. FT-IR spectroscopic investigations of surface and intercalated 2-aminopyrimidine adsorbed on sepiolite and montmorillonite from Anatolia. J. Mol. Struct. 2003, 651: 205–210. https://doi.org/10.1016/S0022-2860(02)00659-2.
62. Sánchez-Solís A., Ibarra-Romero I., Estrada M.R., Calderas F., Manero O. Mechanical and rheological studies on polyethylene terphtalate–montmorillonite nanocomposites. Polym. Eng. Sci. 2004, 44: 1094–1102. https://doi.org/10.1002/pen.20102.
63. Bilgiç C. Investigation of the factors affecting organic cation adsorption on some silicates minerals. J. Colloid Interface Sci. 2005, 281: 33–38. https://doi.org/10.1016/j.jcis.2004.08.038.
64. Herrera N.N., Letoffe J.M., Reymond J.P., Bourgeat-Lami E. Silylation of laponite clay particles with monofunctional and trifunctional vinyl alkoxysilanes. J. Mater. Chem. 2005, 15: 863–871. https://doi.org/10.1039/b415618h.
65. Herrera N.N., Letoffe J.M., Reymond J.P., Bourgeat-Lami E. Silylation of laponite clay particles with monofunctional and trifunctional vinyl alkoxysilanes. J. Mater. Chem. 2005, 15: 863–871. https://doi.org/10.1039/b415618h.
66. Yoshimoto S., Osashi F., Kameyama T. X-ray diffraction studies of intercalation compounds prepared from aniline salts and montmorillonite by mechanical processing. Sol. Sta. Comm. 2005, 136: 251–256. https://doi.org/10.1016/j.ssc.2005.08.017.
67. Felbeck T., Behnke T. Nile-Red−Nanoclay Hybrids: Red Emissive Optical Probes for Use in Aqueous Dispersion. Langmuir. 2013, 29: 11489–11497. https://doi.org/10.1021/la402165q.