2022 (4) 6
https://doi.org/10.15407/polymerj.44.04.297
GUANIDINIIUM-CONTAINING OLIGOMER CATIONIC PROTONIC IONIC LIQUIDS
V.V. Shevchenko,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: valpschevchenko@gmail.com
ORCID: 0000-0003-2100-4468
M.Ya. Vortman,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: vmar1962@i.ua
ORCID: 0000-0003-0092-6009
V.N. Lemeshko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0003-1916-2301
L.A. Goncharenko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0001-7552-0770
S.M. Kobylinskiy,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0002-4915-2502
Polym. J., 2022, 44, no. 4: 297-303.
Section: Polymer synthesis.
Language: Ukrainian.
Abstract:
By reacting a dian epoxy oligomer with guanidinium hydrochloride, a synthesis method of guanidinium-containing cationic proton oligomeric ionic liquids (OIL) capable of condensation reactions was developed. These compounds are characterized by an amphiphilic structure combining a flexible oligoether or hydroxyl-containing guanidinium oligoether block with terminal hydroxyl-containing guanidinium fragments. These compounds are capable of supramolecular organization due to the self-association of flexible oligoether blocks with terminal hydroxyl-containing guanidinium fragments from the outside of the formed cluster. They are characterized by two glass transition temperatures, which differ significantly in magnitude. The structure formed by the flexible oligoether component is determined by its segmental mobility with the glass transition temperature in the range (70–85 °C), and the terminal guanidinium fragments are responsible for the manifestation of the cohesive nature of the glass transition of the oligomer as a whole with the glass transition temperature in the range (-70)–(-60 °C), which characteristic of classical ionic liquids. The proton conductivity of the synthesized compounds in anhydrous conditions reaches a value of 1,94·10-3 S/cm at 120 °C and is determined not by the absolute value of the introduced protons, but by their specific number in relation to the MW oligomers. The synthesized OIL are of interest as electrolytes with an anhydrous conduction mechanism and starting reagents for the synthesis of ion-containing block copolymers of various functional purposes.
Key words: ionic liquids, oligomeric ionic liquids, guanidine, guanidinium ionic liquids, glass transition temperature, ionic conductivity.
REFERENCES
1. Shevchenko V.V., Stryutsky A.V., Klymenko N.S., Gumenna M.A., Fomenko A.A., Bliznyuk V.N., Trachevsky V.V., Davydenko V.V., Tsukruk V.V. Protic and aprotic anionic oligomeric ionic liquids. Polymer. 2014. 55, no. 16: 3349. https://doi.org/10.1016/j.polymer.2014.04.020.
2. Shevchenko V.V., Stryutsky A.V., Klymenko N.S., Gumennaya M.A., Fomenko A.A., Trachevsky V.V., Davydenko V.V., Bliznyuk V.N., Dorokhin A.V. Protic Cationic Oligomeric Ionic Liquids of the Urethane Type. Polymer Science, Ser. B. 2014, 56, no. 5: 583. https://doi.org/10.1134/S156009041405011X.
3. Shumskii V.F., Shevchenko V.V., Gumennaya M.A., et al. Synthesis and properties of polymeric analogs of ionic liquids Colloid Journal, 2019, 81, no. 6: 804–816. https://doi.org/10.1134/S1061933X19050132.
4. Shevchenko V., Gumenna M., Lee H., Klimenko N., Stryutsky A., Trachevsky V., Korolovych V., Tsukruk V. Reactive amphiphilic aprotic ionic liquids based on functionalized oligomeric silsesquioxanes. Bull. Chem. Soc. Jpn., 2021, 94: 2263–2271. https://doi.org/10.1246/bcsj.20210211.
5. Mezhikovsky S.M, Arinstein A.E, Deberdeev R.Y. Oligomeric state of a substance: monograph. Moscow: Nauka, 2005 [in Russian].
6. Greaves T.L., Drummond C.J. Protic ionic liquids: properties and applications. Chem Rev. 2008, 108, no. 1: 206–237. https://doi.org/10.1021/cr068040u.
7. Greaves T., Drummond C. Protic Ionic Liquids: Evolving Structure−Property Relationships and Expanding Applications, Chem. Rev. 2015, 115, no. 20: 11379–11448. https://doi.org/10.1021/acs.chemrev.5b00158.
8. Voinceva I.I., Gembickii P.A. Poliguanidini – dezinfekcionnie sredstva i polifunkcionalnie dobavki v kompozicionnie materiali Moskva, Lakokrasochnaya promishlennost, 2009: 300.
9. Zhao Z., Ueno K., Angell C. High Conductivity and Dry Proton Motion in Guanidinium Salt Melts and Binary Solutions. J.Phys. Chem. 2011, no. 9: 54–59.
10. Zhang P., Liu Y., Fan M., Jiang P. Catalytic performance of a novel amphiphilic alkaline ionic liquid for biodiesel production: Influence of basicity and conductivity Renewable Energy. 2016, 86: 99–105. https://doi.org/10.1016/j.renene.2015.08.008.
11. Vortman M. Ya., Lemeshko V.N., Shevchenko V.V. Guanidiniisoderzhash’aya oligomernaya kationnaya protonnaya ionnaya zhidkost. Dopovidi NAN Ukrayini.2019, no. 12: 75–82. https://doi.org/10.15407/dopovidi2019.12.075.
12. Vortman M.Ya, Lemeshko V.N, Vakulyuk P.V., Furtat I.M., Shevchenko V.V. Guanidinijsoderzhashchie oligomernye kationnye protonnye ionnye zhidkosti s biocidnoj aktivnost’yu Polіmernij zhurnal. 2020, 42, no. 3: 209–217. https://doi.org/10.15407/polymerj.42.03.209.
13. Vortman M.Ya, Lemeshko V.N, Shevchenko V.V. Guanidinijsoderzhashchie oligomernye kationnye protonnye ionnye zhidkosti. Polіmernij zhurnal. 2020, 42, no. 3: 199–208. https://doi.org/10.15407/polymerj.42.03.199.
14. Vortman M. Ya., Lemeshko V.N.,Goncharenko L.A., Kobilinskii S.M., Shevchenko V.V. Oligomerna guanidiniivmisna protonna kationna ionna ridina. Polimernii zhurnal. 2021, 43, no. 4: 304–310. https://doi.org/10.15407/polymerj.43.04.304.
15. Greaves T. L., Weerawardena A., Krodkiewska I., Drummond C. J. Protic Ionic Liquids: Physicochemical Properties and Behavior as Amphiphile Self-Assembly Solvents. J. Phys. Chem. B, 2008, 112: 896–905. https://doi.org/10.1021/jp0767819.
16. Avinovickaya M. Ya., Matyushov V. F., Magdinec V. V. Svoistva blochnih oligomerov na osnove nizkomolekulyarnogo kauchuka i oligodiepoksidov. Visokomolek. soedin. Ser. B. 1987, 29, no. 11: 812–816. https://doi.org/10.1007/BF00707747.
17. Mecerreves D. Polymeric ionic liquids. Broadening the properties and application of polyelectrolytes. Prog. Polym. Sci. 2011, 36: 1629–1648. https://doi.org/10.1016/j.progpolymsci.2011.05.007.
18. Gray F.M. Solid Polymer Electrolytes: Fundamentals and Technological Applications. New York: VCH Publishers, Inc., 1991: 245.
19. Shaplov A.S., Ponkratov D.O., Vlasov P.S., Lozinskaya E.I., Komarova L.I., Malyshkina I.A., Vidal F., Nguyen G.T.M., Armand M., Wandrey C., Vygodskii Ya.S. Synthesis and properties of polymeric analogs of ionic liquids. Polymer Sci. B, 2013, 55: 122–138. https://doi.org/10.1134/S1560090413030044.