2023 (1) 1

https://doi.org/10.15407/polymerj.45.01.003

THOUGHTS ON CURRENT TRENDS IN APPLIED POLYMER/BIOPOLYMER MATERIALS FOR MODERN FUNCTIONAL APPLICATIONS

MINKYU KIM,
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA,
SAEWON KANG,
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA,
VLADIMIR V. TSUKRUK,
School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA,
e-mail: vladimir@mse.gatech.edu

Polym. J., 2023, 45, no. 1: 3-14.

Section: Review.

Language: English.

Abstract:

We discuss current trends in developing novel synthetic polymers, biopolymers, and corresponding soft and functional hybrid nanocomposites for advanced current and future applications with an emphasis on active functional devices and functions. Among a wide variety of polymeric materials and relevant applications, we select the fields, which are close to the authors’ research interests. This selection includes strong but lightweight biopolymer composites, gel-like and porous materials for chemical and energy transport control, fast-actuating responsive materials and structures, and thin film electronic materials for chemical, physical, and biological sensing applications compatible with human and robotic interfaces.

Key words: polymer composites; structural polymers; functional and actuating materials; bio-enable composites; metamaterials.

REFERENCES
1. Nepal D., Kang S., Adstedt K. M., Kanhaiya K., Bockstaller M. R., Brinson L. C., Buehler M. J., Coveney P. V., Dayal K., El-Awady J. A., Henderson L. C., Kaplan D. L., Keten S., Kotov N. A., Schatz G. C., Vignolini S., Vollrath F., Wang Y., Yakobson B. I., Tsukruk V. V., Heinz H. Hierarchically structured bioinspired nanocomposites. Nat. Mater., 2023, 22, 18–35. https://doi.org/10.1038/s41563-022-01384-1.
2. Zheng X. Y., Lee H., Weisgraber T.H., Shusteff M., DeOtte J., Duoss E.B., Kuntz J.D., Biener M.M., Ge Q., Jack-
son J.A., Kucheyev S.O., Fang N.X., Spadaccini C.M. Ultralight, ultrastiff mechanical metamaterials. Science, 2014, 344, 1373. http://DOI: 10.1126/science.1252291.
3. Hensleigh R.M., Cui H.C., Oakdale J.S., Ye J.C.C., Campbell P.G., Duoss E.B., Spadaccini C.M., Zheng X.Y., Wors-ley M.A. Additive manufacturing of complex micro-architected graphene aerogels. Mater. Horiz., 2018, 5, 1035–1041. https://doi.org/10.1039/C8MH00668G.
4. Zheng X.Y., Smith W., Jackson J., Moran B., Cui H.C., Chen D., Ye J.C., Fang N., Rodriguez N., Weisgraber T., Spadaccini C.M. Multiscale metallic metamaterials. Nat. Mater., 2016, 15, 1100. https://doi.org/10.1038/nmat4694.
5. Cui H.C., Hensleigh R., Chen H.S., Zheng X.Y. Additive Manufacturing and sizedependent mechanical properties of three-dimensional microarchitected, hightemperature ceramic metamaterials. J. Mater. Res., 2018, 33, 360–371. http://doi:10.1557/jmr.2018.11.
6. Meza L.R., Zelhofer A.J., Clarke N., Mateos A.J., Kochmann D.M., Greer J.R. Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 11502–11507. https://doi.org/10.1073/pnas.1509120112.
7. Jaeger H. M., Liu A. J. Far-from-equilibrium physics: An overview, arXiv preprint arXiv:1009.4874, 2010. https://doi.org/10.48550/arXiv.1009.4874.
8. Srinivasarao M., Iannacchione G. S., Parikh A. N. Biologically inspired far-from-equilibrium materials. MRS Bull., 2019, 44, 91–95. http://doi:10.1557/mrs.2019.24
9. Whitesides G. M. Soft Robotics. Angew. Chem., Int. Ed., 2018, 57, 4258–4273. https://doi.org/10.1002/anie.201800907.
10. Sharma U., Concagh D., Core L., Kuang Y., You C., Pham Q., Zugates G., Busold R., Webber S., Merlo J., Langer R., Whitesides G. M., Palasis M. The development of bioresorbable composite polymeric implants with high mechanical strength. Nat. Mater., 2018, 17, 96–103. https://doi.org/10.1038/nmat5016.
11. Wang P., Tan K. L., Kang E. T., Neoh K. G. Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane. J. Membr. Sci., 2002, 195, 103-114. https://doi.org/10.1016/S0376-7388(01)00548-8.
12. Cho Y. H., Kim H. W., Nam S. Y., Park H. B. Fouling-tolerant polysulfone–poly(ethylene oxide) random copolymer ultrafiltration membranes. J. Membr. Sci., 2011, 379, 296-306. https://doi.org/10.1016/j.memsci.2011.05.075.
13. Shi L., Yu Q., Huang H., Mao Y., Lei J., Ye Z., Peng X. Superior separation performance of ultrathin gelatin films. J. Mater. Chem. A, 2013, 1, 1899-1906. https://doi.org/10.1039/C2TA00130F.
14. Liu F., Hashim N. A., Liu Y., Abed M. R. M., Li K. Progress in the production and modification of PVDF membranes. J. Membr. Sci., 2011, 375, 1-27. https://doi.org/10.1016/j.memsci.2011.03.014.
15. Thompson K. A., Mathias R., Kim D., Kim J., Rangnekar N., Johnson J. R., Hoy S. J., Bechis I., Tarzia A., Jelfs K. E., McCool B. A., Livingston A. G., Lively R. P., Finn M. G., N-Aryl–linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science, 2020, 369, 310. http://DOI: 10.1126/science.aba9806.
16. Gopinadhan M., Deshmukh P., Choo Y., Majewski P. W., Bakajin O., Elimelech M., Kasi R. M., Osuji C. O. Thermally Switchable Aligned Nanopores by Magnetic-Field Directed Self-Assembly of Block Copolymers. Adv. Mater., 2014, 26, 5148-5154. https://doi.org/10.1002/adma.201401569.
17. Zhang Q., Ghosh S., Samitsu S., Peng X., Ichinose I. Ultrathin freestanding nanoporous membranes prepared from polystyrene nanoparticles. J. Mater. Chem. 2011, 21, 1684-1688. https://doi.org/10.1039/C0JM03334K.
18. Bernards D. A., Desai T. A. Nanoscale porosity in polymer films: fabrication and therapeutic applications. Soft Matter, 2010, 6, 1621-1631. https://doi.org/10.1039/B922303G.
19. Xiong R., Grant A. M., Ma R., Zhang S., Tsukruk V. V. Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Mat. Sci. Eng. R, 2018, 125, 1. https://doi.org/10.1016/j.mser.2018.01.002.
20. Anasori B., Gogotsi Y. 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications. 2019, Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_1.
21. Miró P., Audiffred M., Heine T. An atlas of two-dimensional materials. Chem. Soc. Rev., 2014, 43, 6537. https://doi.org/10.1039/C4CS00102H.
22. Gupta A., Sakthivel T., Seal S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci., 2015, 73, 44. https://doi.org/10.1016/j.pmatsci.2015.02.002.
23. Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39, 228. https://doi.org/10.1039/B917103G.
24. Nicolosi V., Chhowalla M., Kanatzidis M. G., Strano M. S., Coleman J. N. Liquid exfoliation of layered materials. Science, 2013, 340, 1226419. http://DOI: 10.1126/science.1226419.
25. Naguib M., Mashtalir O., Carle J., Presser V., Lu J., Hultman L., Gogotsi Y., Barsoum M. W. Two-dimensional transition metal carbides. ACS Nano, 2012, 6,1322. https://doi.org/10.1021/nn204153h.
26. Gogotsi Y., Anasori B. The rise of MXenes. ACS Nano, 2019, 13, 8491. https://doi.org/10.1021/acsnano.9b06394.
27. Hart J. L., Hantanasirisakul K., Lang A. C., Anasori B., Pinto D., Pivak Y., van Omme J. T., May S. J., Gogotsi Y., Taheri M. L. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun., 2019, 10, 522. https://doi.org/10.1038/s41467-018-08169-8.
28. Deysher G., Shuck C. E., Hantanasirisakul K., Frey N. C., Foucher A. C., Maleski K., Sarycheva A., Shenoy V. B.,
Stach E. A., Anasori B., Gogotsi Y. Synthesis of Mo4VAlC4 MAX Phase and Two-Dimensional Mo4VC4
MXene with Five Atomic Layers of Transition Metals. ACS Nano, 2020, 14, 204. https://doi.org/10.1021/acsnano.9b07708.
29. Cheng L., Thomas A., Glancey J. L., Karlsson A. M. Mechanical behavior of bio-inspired laminated composites. Compos. Part A Appl. Sci. Manuf., 2011, 42, 211. https://doi.org/10.1016/j.compositesa.2010.11.009.
30. Karahan H. E., Goh K., Zhang C., Yang E., Yıldırım C., Chuah C. Y., Ahunbay M. G., Lee J., Tantekin-Ersol-
maz Ş. B., Chen Y., Bae T.-H. MXene Materials for Designing Advanced Separation Membranes. Adv. Mater., 2020, 32, 1906697. https://doi.org/10.1002/adma.201906697.
31. Kang K. M., Kim D. W., Ren C. E., Cho K. M., Kim S. J., Choi J. H., Nam Y. T., Gogotsi Y., Jung H.-T. Selective Molecular Separation on Ti3C2Tx–Graphene Oxide Membranes during Pressure-Driven Filtration: Comparison with Graphene Oxide and MXenes. ACS Appl. Mater. Interfaces, 2017, 9, 44687. https://doi.org/10.1021/acsami.7b10932.
32. Pandey R. P., Rasool K., Madhavan V. E., Aïssa B., Gogotsi Y., Mahmoud K. A. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A, 2018, 6, 3522. https://doi.org/10.1039/C7TA10888E.
33. Ding L., Wei Y., Wang Y., Chen H., Caro J., Wang H. A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks. Angew. Chem. Int. Ed., 2017, 56, 1825-1829. https://doi.org/10.1002/anie.201609306.
34. Long Q., Zhao S., Chen J., Zhang Z., Qi G., Liu Z.-Q. Self-assembly enabled nano-intercalation for stable high-performance MXene membranes. J. Membr. Sci., 2021, 635, 119464. https://doi.org/10.1016/j.memsci.2021.119464.
35. Krecker M. C., Bukharina D., Hatter C. B., Gogotsi Y., Tsukruk V. V. Bioencapsulated MXene Flakes for Enhanced Stability and Composite Precursors. Adv. Funct. Mater., 2020, 30, 2004554. https://doi.org/10.1002/adfm.202004554.
36. Xiong R., Kim H. S., Zhang L., Korolovych V. F., Zhang S., Yingling Y. G., Tsukruk V. V. Wrapping nanocellulose nets around graphene oxide sheets. Angew. Chem., Int. Ed., 2018, 57, 8508. https://doi.org/10.1002/anie.201803076.
37. Ling S., Li C., Adamcik J., Wang S., Shao Z., Chen X., Mezzenga R. Directed growth of silk nanofibrils on graphene and their hybrid nanocomposites. ACS Macro Lett., 2014, 3, 146. https://doi.org/10.1021/mz400639y
38. Wasserscheid P., Welton T. Ionic Liquids in Synthesis. 2008, Willey-VCH, Weinheim, Germany. https://doi.org/10.1002/9783527621194.ch1.
39. Noda A., Susan M. A. B. H., Kudo K., Mitsushima S., Hayamizu K., Watanabe M. Pulsed-Gradient Spin−Echo 1H and 19F NMR Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids. J. Phys. Chem. B, 2003, 107, 4024. https://doi.org/10.1021/jp004132q.
40. Ye Y. -S., Rick J., Hwang B. J. Ionic liquid polymer electrolytes. J. Mater. Chem. A, 2013, 1, 2719. https://doi.org/10.1039/C2TA00126H.
41. Le Bideau J., Viau L., Vioux A. Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev., 2011, 40, 907. https://doi.org/10.1039/C0CS00059K.
42. Ding Y., Zhang J., Chang L., Zhang X., Liu H., Jiang L. Preparation of High-Performance Ionogels with Excellent Transparency, Good Mechanical Strength, and High Conductivity. Adv. Mater. 2017, 29,1704253. https://doi.org/10.1002/adma.201704253.
43. Lee H., Erwin A., Buxton M. L., Kim M., Stryutsky A. V., Shevchenko V. V., Sokolov A. P., Tsukruk V. V. Shape Persistent, Highly Conductive Ionogels from Ionic Liquids Reinforced with Cellulose Nanocrystal Network, Adv. Funct. Mater., 31, 2021, 2103083. https://doi.org/10.1002/adfm.202103083.
44. Qin H., Panzer M. J. Zwitterionic Copolymer-Supported Ionogel Electrolytes Featuring a Sodium Salt/Ionic Liquid Solution. Chem. Mater., 2020, 32, 7951. https://doi.org/10.1021/acs.chemmater.0c02820.
45. Song H., Niu Y., Wang Z., Zhang J. Liquid Crystalline Phase and Gel−Sol Transitions for Concentrated Microcrystalline Cellulose (MCC)/1-Ethyl-3-methylimidazolium Acetate (EMIMAc) Solutions. Biomacromolecules, 2011, 12, 1087. https://doi.org/10.1021/bm101426p.
46. Vidinha P., Lourenco Nuno M. T., Pinheiro C., Bras Ana R., Carvalho T., Santos-Silva T., Mukhopadhyay A., Romao Maria J., Parola J., Dionisio M., Cabral Joaquim M. S., Afonso Carlos A. M., Barreiros S. Ion jelly: a tailor-made conducting material for smart electrochemical devices. Chem. Commun., 2008, 44, 5842. https://doi.org/10.1039/B811647D.
47. Zhu Y., Li X., Zhao Z., Liang Y., Wang L., Liu Y. Highly Stretchable, Transparent and Adhesive Ionogel Based on Chitosan-Poly(acrylic acid) Double Networks for Flexible Strain Sensors. Gels, 2022, 8, 797. https://doi.org/10.3390/gels8120797.
48. Zhao R., Wu Y., Liang Z., Gao L., Xia W., Zhao Y., Zou R. Metal–Organic Frameworks for Solid-State Electrolytes. Energy Environ. Sci. 2020, 13, 2386-2403. https://doi.org/10.1039/D0EE00153H.
49. Qian Q., Asinger P. A., Lee M. J., Han G., Mizrahi Rodriguez K., Lin S., Benedetti F. M., Wu A. X., Chi W. S.,
Smith Z. P. MOF-Based Membranes for Gas Separations. Chem. Rev. 2020, 120, 8161-8266. https://doi.org/10.1021/acs.chemrev.0c00119.
50. Ehrling S., Reynolds E. M., Bon V., Senkovska I., Gorelik T. E., Evans J. D., Rauche M., Mendt M., Weiss M. S., Pöppl A., Brunner E., Kaiser U., Goodwin A. L., Kaskel S. Adaptive Response of a Metal–Organic Framework Through Reversible Disorder–Disorder Transitions. Nat. Chem. 2021, 13, 568–574. https://doi.org/10.1038/s41557-021-00684-4.
51. Schulte Z. M., Rosi N. L. MOFs Constructed from Biomolecular Building Blocks, Metal-Organic Frameworks in Biomedical and Environmental Field. Springer, Cham, 2021. 291-320. https://doi.org/10.1007/978-3-030-63380-6_9.
52. Sontz P. A., Bailey J. B., Ahn S., Akif Tezcan F. A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals. J. Am. Chem. Soc., 2015, 137, 11598–11601. https://doi.org/10.1021/jacs.5b07463.
53. Vaidhyanathan R., Bradshaw D., Rebilly J.-N., Barrio J. P., Gould J. A., Berry N. G., Rosseinsky M. J. A Family of Nanoporous Materials Based on an Amino Acid Backbone. Angew. Chem. Int. Ed., 2006, 45, 6495. https://doi.org/10.1002/anie.200602242.
54. Katsoulidis A. P., Antypov D., Whitehead G. F. S., Carrington E. J., Adams D. J., Berry N. G., Darling G. R.,
Dyer M. S., Rosseinsky M. J. Chemical Control of Structure and Guest Uptake by a Conformationally Mobile Porous Material. Nature, 2019, 565, 213-217. https://doi.org/10.1038/s41586-018-0820-9.
55. Navarro-Sánchez J., Argente-García A. I., Moliner-Martínez Y., Roca-Sanjuán D., Antypov D., Campíns-Falcó P., Rosseinsky M. J., Martí-Gastaldo C. Peptide Metal–Organic Frameworks for Enantioselective Separation of Chiral Drugs. J. Am. Chem. Soc., 2017, 139, 4294-4297. https://doi.org/10.1021/jacs.7b00280.
56. Xing Q., Pan Y., Hu Y., Wang L. Review of the Biomolecular Modification of the Metal-Organ-Framework. Front. Chem. 2020, 642, 1-10. https://doi.org/10.3389/fchem.2020.00642.
57. Rabone J., Yue Y.-F., Chong S., Stylianou K., Bacsa J., Bradshaw D., Darling G., Berry N., Khimyak Y., Ganin A. An Adaptable Peptide-Based Porous Material. Science, 2010, 329, 1053-1057. http://DOI: 10.1126/science.1190672.
58. Zhang B., Huang J., Liu K., Zhou Z., Jiang L., Shen Y., Zhao D. Biocompatible Cyclodextrin-Based Metal–Organic Frameworks for Long-Term Sustained Release of Fragrances. Ind. Eng. Chem. Res. 2019, 58, 19767-19777. https://doi.org/10.1021/acs.iecr.9b04214.
59. Chen D., Zheng X.Y. Multi-material additive manufacturing of metamaterials with giant, tailorable negative Poisson’s ratios. Sci. Rep. 2018, 8, 9139. https://doi.org/10.1038/s41598-018-26980-7.
60. Ma R., Wu C., Wang Z. L., Tsukruk V. V. Pop-Up Conducting Large-Area Biographene Kirigami, ACS Nano, 2018, 12, 9714-9720. https://doi.org/10.1021/acsnano.8b04507.
61. Sachse R., Westermeier A., Mylo M., Nadasdi J., Bischoff M., Speck T., Poppinga S. Snapping mechanics of the Venus flytrap (Dionaea muscipula). Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 16035− 16042. https://doi.org/10.1073/pnas.2002707117.
62. Yan Z., Zhang F., Liu F., Han M., Ou D., Liu Y., Lin Q., Guo X., Fu H., Xie Z., Gao M., Huang Y., Kim J., Qiu Y., Nan K., Kim J., Gutruf P., Luo H., Zhao A., Hwang K.-C., Huang Y., Zhang Y., Rogers J. A. Mechanical Assembly of Complex, 3D Mesostructures from Releasable Multilayers of Advanced Materials. Sci. Adv., 2016, 2, e1601014. http://DOI: 10.1126/sciadv.1601014.
63. Zhang X., Kang S., Adstedt K., Kim M., Xiong R., Yu J., Chen X., Zhao X., Ye C., Tsukruk V. V. Uniformly aligned flexible magnetic films from bacterial nanocelluloses for fast actuating optical materials. Nat. Commun., 2022, 13, 5804. https://doi.org/10.1038/s41467-022-33615-z.
64. Zhang S., Geryak R., Geldmeier J., Kim S., Tsukruk V. V. Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chem. Rev., 2017, 117, 12942-13308. https://doi.org/10.1021/acs.chemrev.7b00088.
65. Hu K., Tolentino L. S., Kulkarni D. D., Ye C., Kumar S., Tsukruk V. V. Written-in Conductive Patterns on Robust Graphene Oxide Biopaper by Electrochemical Microstamping. Angew. Chem. Int. Ed., 2013, 52, 13784 –13788. https://doi.org/10.1002/anie.201307830.
66. Hu K., Xiong R., Guo H., Ma R., Zhang S., Wang Z. L., Tsukruk V. V. Self-Powered Electronic Skin with Bio-Tactile Sensitivity. Adv. Mater., 2016, 28, 3549-3556. https://doi.org/10.1002/adma.201506187.
67. Hu K., Tsukruk V. V. Tuning the Electronic Properties of Robust Bio-Bond Graphene Papers by Spontaneous Electrochemical Reduction: From Insulators to Flexible Semi-Metals. Chem. Mater., 2015, 27, 6717−6729. https://doi.org/10.1021/acs.chemmater.5b02750.
68. Ma R., Tsukruk V. V. Seriography-Guided Fabrication of Graphene Oxide Biopapers for Wearable Sensory Electronics. Adv. Funct. Mater., 2017, 27, 1604802. https://doi.org/10.1002/adfm.201604802.
69. Ma R., Gordon D., Yushin G., Tsukruk V. V. Robust and Flexible Micropatterned Electrodes and Micro-Supercapacitors in Graphene-Silk Biopapers. Adv. Mater. Interfaces, 2018, 5, 1801203. https://doi.org/10.1002/admi.201801203.
70. Kim M., Lee H., Krecker M. C., Bukharina D., Nepal D., Bunning T. J., Tsukruk V. V. Switchable Photonic Bio-Adhesive Materials. Adv. Mater., 2021, 33, 2103674. https://doi.org/10.1002/adma.202103674.