2023 (2) 2
https://doi.org/10.15407/polymerj.45.02.104
SPECTRAL AND PHOTOPHYSICAL CHARACTERISTICS OF ASYMMETRIC POLYMETHINE DYES IN POLYURETHANE MATRICES
T.V. Bezrodna,
Institute of Physics NAS of Ukraine, 46 Nauki prosp., Kyiv 03680, Ukraine,
e-mail: tomaalone@yahoo.com
ORCID: 0000-0003-1935-7475
L.F. Kosyanchuk,
Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shoes, Kyiv 02155, Ukraine,
e-mail: lkosyanchuk@ukr.net
ORCID: 0000-0002-3617-9538
O.I. Antonenko,
Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shoes, Kyiv 02155, Ukraine,
e-mail: ant111@i.ua
ORCID: 0000-0002-6451-7944
A.A. ISHCHENKO,
Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska st., Kyiv 02660, Ukraine,
e-mail: al.al.ishchenko@gmail.com
ORCID: 0000-0003-2722-3944
V.I. BEZRODNYI,
Institute of Physics NAS of Ukraine, 46 Nauki prosp., Kyiv 03680, Ukraine,
e-mail: bezrod@iop.kiev.ua
ORCID: 0000-0001-9965-8707
V.V. NESPRAVA,
Institute of Physics NAS of Ukraine, 46 Nauki prosp., Kyiv 03680, Ukraine,
e-mail: nesprava@iop.kiev.ua
ORCID: 0000-0001-9026-4349
A.M. NEGRIYKO,
Institute of Physics NAS of Ukraine, 46 Nauki prosp., Kyiv 03680, Ukraine
e-mail: amnegriyko@gmail.com
ORCID: 0000-0002-2954-5157
O.O. BROVKO,
Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shoes, Kyiv 02155, Ukraine,
e-mail: brovko@nas.gov.ua
ORCID: 0000-0003-0238-1137
Polym. J., 2023, 45, no. 2: 104-113.
Section: Structure and properties.
Language: Ukrainian.
Abstract:
Effects of the polymer matrix polarity on the spectral and photophysical properties of asymmetric polymethine dyes were investigated. Asymmetrical cyanines of the LDS (laser dye styryl) series were used, which were introduced into elastic polyurethane matrices by an auxiliary solvent. Polymer media were synthesized by: a polyaddition reaction based on macrodiisocyanate from oligoethylene glycol adipinate, hexamethylene diisocyanate, trimethylolpropane, and a photopolymerization reaction of oligourethane acrylate with benzoin isobutyl ether. Polyurethane polarity influence on the absorption and luminescence band maxima, and the Stokes shift of the dye spectra was studied, and the obtained spectral parameters of dyes in the polymer matrices were compared with the corresponding characteristics of their ethanol solutions. The observed spectral peak positions of the absorption and luminescence bands, changes in the Stokes shift value for the LDS dyes in different environments indicated the presence of positive solvatochromism. The presented results demonstrated the possibility of the significant increase in photostability of asymmetric polymethine dyes in the polymer polyurethane matrix of high polarity, obtained by means of the polyaddition reaction.
Key words: polymethine dyes, polyurethane, absorption, luminescence.
References
1. Воndаr М.V., Dеrеvуankо N.A., Dyadyusha G.G., Zubаrоvsкii V.Al., Ishchenko A.A., Przhonskaya О.V., Slomins-kii Yu.L., Smirnova A.L., Tikhonov E.A., Talmасhev A.I. Generation of light in the near infrared using solutions of asymmetric polymethine dyes. J. Quantum. Electron., 1984, 14, no. 3: 317–322. https://doi.org/10.1070/QE1984v014n03ABEH004888.
2. Oki Y., Miyamoto S., Tanaka M., Zuo D., Maeda M. Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers. Opt. Commun., 2002, 214, no. 1–6: 277–283. https://doi.org/10.1016/S0030-4018(02)02125-9.
3. Kobayashi T., Savatier J.-B., Jordan G., Blau W.J., Suzuki Y., Kaino T. Near-infrared laser emission from luminescent plastic waveguides. Appl. Phys. Letters, 2004, 85, no. 2: 185. https://doi.org/10.1063/1.1772524.
4. Jassim M.J., Khadim Y.H., Al- Sultani M.M.M. Study of the spectral characteristics for the Styryl 9M laser Dye. Int. J. Chemtech. Res., 2017, 10, no. 9: 646–653.
CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555.
5. Decker C.D. Excited state absorption and laser emission from infrared laser dyes optically pumped at 532 nm. Appl. Phys. Lett., 1975, 27, no. 11: 607. https://doi.org/10.1063/1.88305.
6. Zhao C.F., Gvishi R., Narang U., Ruland G., Prasad P.N. Structures, spectra, and lasing properties of new (aminostyryl)pyridinium laser dyes. J. Phys. Chem., 1996, 100, no.11: 4526–4532. https://doi.org/10.1021/jp9533685.
7. Chiad B.T., Ismael I.I. Spectroscopic study of Styryl films doped PMMA prepared dip coating method. J. Applied Physics, 2017, 9, no. 5: 14–17. https://doi.org/10.9790/4861-0905021417.
8. Hoffnagle J., Roesch L.Ph., Schlumpf N., Weis A. CW operation of laser dyes Styryl-9 and Styryl-11. Opt. Commun., 1982, 42, no. 4: 267−268. https://doi.org/10.1016/0030-4018(82)90031-1.
9. Bado P., Dupuy C., Wilson K.R., Boggy R., Bowen J., Westra S. High efficiency picosecond pulse generation in the 675-930 nm region from a dye laser synchronously pumped by an argon-ion laser. Opt. Commun., 1983, 46, no. 3–4: 241−243. https://doi.org/10.1016/0030-4018(83)90286-9.
10. Dyumaev K.M., Manenkov A.A., Maslyukov A.P., Matyushin G.A., Nechitallo V.S., Prokhorov A.M. Izv. Akad. Nauk SSSR, Ser. Fiz., 1987, 51: 1387−1389.
11. Bezrodnyi V.I., Przhonskaya О.V., Tikhonov E.A., Bondar M.V., Shpak M.T. Polymer active and passive laser elements made of organic dyes. J. Quantum. Electron., 1982, 12, no. 12: 1602–1608. https://doi.org/10.1070/QE1982v012n12ABEH006296.
12. Bezrodna T.V., Ishchenko A.A., Bezrodnyi V.I., Negriyko A.M., Kosyanchuk L.F., Antonenko O.I., Brovko O.O. Covalent bonding effects on spectral, photophysical and generation properties of indocarbocyanine dyes in polyurethanes. Optics and Laser Technology, 2021, 144: 107412. https://doi.org/10.1016/j.optlastec.2021.107412.
13. Goldenberg L.M., Lisinetskii V., Schrader S. Azobenzene Lasers Tuned Over a 200 nm Range Adv. Opt. Mater., 2013, 1, no. 7: 527–533. https://doi.org/10.1002/adom.201300195.
14. Bezrodnyi V.I., Ishchenko A.A. High efficiency lasing of a dye-doped polymer laser with 1.06μm pumping. Appl. Phys. 2002, B73, no. 3: 283−285. https://doi.org/10.1007/s003400100646.
15. Bezrodna T.V., Antonenko O.I., Kosyanchuk L.F., Roshchin O.M., Bezrodnyi V.I., Negriyko A.M., Yaskovets A.O. Silica effects on spectral and photophysical properties of rhodamine 6G in polyurethane matrix. Dopov. Nac. akad. nauk Ukr., 2019, 7: 36−43. https://doi.org/10.15407/dopovidi2019.07.036.
16. Kawski A. On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Z. Naturforsch. A, 2002, 57a, no. 5: 255–262. https://doi.org/10.1515/zna-2002-0509.
17. Chibisov A.K., Zakharova G.V., Görner H., Sogulyaev Yu.A., Mushkalo I.L., Tolmachev A.I. Photorelaxation processes in covalently linked indocarbocyanine and thiacarbocyanine dyes. J. Phys. Chem., 1995, 99, no. 3: 886−893. https://doi.org/10.1021/j100003a009.
18. Ishchenko A.A. Molecular engineering of dye-doped polymers for optoelectronics. Polym. Adv. Technol., 2002, 13, no.10-12: 744–752. https://doi.org/10.1002/pat.269.
19. Cao X., Tolbert R.W., McHale J.L., Edwards W.D. Theoretical study of solvent effects on the intramolecular charge transfer of a hemicyanine dye. J. Phys. Chem. A, 1998, 102, no. 17: 2739−2748. https://doi.org/10.1021/jp972190e.
20. Ishchenko A.A. Laser media based on polymethine dyes. Quantum Electron., 24(21), no.6: 471−492. https://doi.org/10.1070/QE1994v024n06ABEH000122.
21. Ishchenko A.A. Physicochemical aspects of the creation of modern light-sensitive materials based on polymethine dyes. Theor. Exp. Chem., 1998, 34, no.4: 191–210. https://doi.org/10.1007/BF02523249.
22. Yang S., Tian H., Xiao H., Shang X., Gong X., Yao S., Chen K. Photodegradation of cyanine and merocyanine dyes. Dyes Pigments, 2001, 49, no. 2: 93−101. https://doi.org/10.1016/S0143-7208(01)00012-2.