2023 (2) 7
https://doi.org/10.15407/polymerj.45.02.153
PROMISING NANOBIOTECHNOLOGY FOR POULTRY FARMING BASED ON SILVER NANOPARTICLES EMBEDDED IN POLYMER-INORGANIC HYBRID CARRIERS
T.B. ZHELTONOZHSKAYA,
Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske shose, 02155 Kyiv, Ukraine,
ORCID: 0000-0001-5272-4244
L.V. SHEVCHENKO,
National University of Life and Environmental Sciences of Ukraine, 15 Heroyiv Oborony St., 03041 Kyiv, Ukraine,
ORCID: 0000-0001-7472-4325
N.M. PERMYAKOVA,
Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske shose, 02155 Kyiv, Ukraine,
ORCID: 0000-0002-7622-1059
Y.Y. DOVBNIA,
National University of Life and Environmental Sciences of Ukraine, 15 Heroyiv Oborony St., 03041 Kyiv, Ukraine,
ORCID: 0000-0002-0484-6500
V.V. KLEPKO,
Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske shose, 02155 Kyiv, Ukraine,
ORCID: 0000-0001-8089-8305
D.O. KLYMCHUK,
M.G. Kholodniy Institute of Botany of the NAS of Ukraine, 2 Tereshchenkivska St., 01601 Kyiv, Ukraine,
ORCID: 0000-0002-7076-8213
Polym. J., 2023, 45, no. 2: 153-174.
Section: Polymer synthesis.
Language: English.
Abstract:
A promising composite material is proposed to reduce the endogenous and exogenous contamination of chicken eggs with pathogenic microflora during their formation and storage. It is based on hybrid biocompatible and biodegradable silica/polyacrylamide nanocarriers containing small silver nanoparticles (dav=2.4±1.0 nm) that are orally administered to laying hens with drinking water. The features of the formation of nanosilver in hybrid carriers by borohydride reduction of a silver salt at its various concentrations in an aqueous solution have been studied. An interesting effect of the sharp appearance of the second surface plasmon resonance band in the UV-Vis spectra of a silver salt/hybrid mixture at a high salt concentration was found. This was explained by sharp structural changes in the hybrid carriers caused by the simultaneous growth of many AgNPs in them. It was assumed that the intensive growth of many AgNPs in one hybrid particle was accompanied by detachment of the grafted PAAm chains from the SiO2 surface due to the breaking of hydrogen bonds. The change in the state of the composite material under the influence of the pH of the solution, the concentration of nanoparticles, the presence of NaCl (as in a “physiological solution”), and visible light was studied by UV-Vis spectroscopy, potentiometric titration, and TEM. Nanosilver in carriers showed high stability with respect to most of these factors. The influence of the composite material on the clinical state of laying hens and important parameters of their eggs and blood was studied when it was administered orally with drinking water three times every 10 days at doses of 0.2 and 0.4 mg per chicken per day. A striking effect of selective endogenous accumulation of silver in eggshells has been revealed. This confirmed the penetration of the nanosilver composite into the circulatory system of chickens by passing through the digestive tract, absorption through the intestinal epithelium and further transport into the tissues of the chickens, including the oviducts, where protein and eggshell are formed. Such penetration did not cause a toxic effect on the body of laying hens.
Key words: nanosilver composite material, silica/polyacrylamide nanocarriers, structure and stability, laying hens, parameters of chicken eggs and blood.
References
1. Fondevila M. Potential use of silver nanoparticles as an additive in animal feeding. Chapter 17. In book: Silver nanoparticles / Ed. D.P. Perez. InTech: Mountain View, CA, USA, 2010, 325–334. DOI: 10.5772/8509, ISBN 978-953-307-028-5.
2. Fondevila M., Herrer M., Casallas C., Abecia L., Ducha J.J. Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Animal Feed Science and Technology, 2009, 150, no. 3–4: 259–269. https://doi.org/10.1016/j.anifeedsci.2008.09.003.
3. Da Costa Junior S.D., de Almeida Campos L.A., Palácio S.B., Ferro Cavalcanti I.M. Silver nanoparticles as a promising therapeutic strategy for infections caused by resistant bacteria in cattle and birds. Approaches in Poultry, Dairy & Veterinary Sciences, 2018, 4, no. 3: 348–352. DOI:10.31031/APDV.2018.04.000592.
4. Abdelsalam M., Al-Homidan I., Ebeid T., Abou-Emera O., Mostafa M., Abd El-Razik M., Shehab-El-Deen M., Abdel Ghani S., Fathi M. Effect of silver nanoparticle administration on productive performance, blood parameters, antioxidative status, and silver residues in growing rabbits under hot climate. Animals, 2019, 9, no. 10: 845. https://doi.org/10.3390/ani9100845.
5. Michalak I., Dziergowska K., Alagawany M., Farag M.R., El-Shall N.A., Tuli H.S., Emran T.B., Dhama K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Veterinary Quarterly, 2022, 42, no. 1:68–94.
https://doi.org/10.1080/01652176.2022.2073399.
6. Patra A., Lalhriatpuii M. Progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding – a review. Biological Trace Element Research, 2020, 197: 233–253. https://doi.org/10.1007/s12011-019-01959-1.
7. Abd El-Ghany W.A. Nanotechnology and its considerations in poultry field: an overview. Journal of the Hellenic Veterinary Medical Society, 2019, 70, no. 3: 1611–1616. http://dx.doi.org/10.12681/jhvms.21783.
8. Anwar M.I., Awais M.M., Akhtar M., Navid M.T., Muhammad F. Nutritional and immunological effects of nano-particles in commercial poultry birds. World’s Poultry Science Journal, 2019, 75, no. 2: 261–272. https://doi.org/10.1017/S0043933919000199.
9. Ahmadi J. Application of different levels of silver nanoparticles in food on the performance and some blood parameters of broiler chickens. World Applied Sciences Journal, 2009, 7(Suppl 1): 24–27. ISSN 1818-4952. https://www.researchgate.net/publication/228484573.
10. Elkloub K., Moustafa M.E.l., Ghazalah A.A., Rehan A.A.A. Effect of dietary nanosilver on broiler performance. International Journal of Poultry Science, 2015, 14, no. 3: 177–182. DOI:10.3923/ijps.2015.177.182.
11. Saleh A.A., El-Magd M.A. Beneficial effects of dietary silver nanoparticles and silver nitrate on broiler nutrition. Environmental Science and Pollution Research, 2018, 25, no. 27: 27031–27038. https://doi.org/10.1007/s11356-018-2730-7.
12. Abbasi A., Hashemi S.R., Hassani S., Ebrahimi M. Gastrointestinal microbial population response and performance of broiler chickens fed with organic acids and silver nanoparticles coated on zeolite under heat stress condition. Iranian Journal of Applied Animal Science, 2018, 8, no. 4: 685–691. ISSN (print) 2251-628X; ISSN (online) 2251-631X.
13. Ahmadi F., Kurdestany A.H. The impact of silver nanoparticles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. Global Veterinaria, 2010, 5, no. 6: 366–370. ISSN 1992-6197.
14. Chauke N., Siebrits F.K. Evaluation of silver nanoparticles as a possible coccidiostat in broiler production. South African Journal of Animal Science, 2012, 42, no. 5: 493–497. DOI:10.4314/SAJAS.V42I5.10.
15. Ahmadi F. Impact of different levels of silver nanoparticles (Ag-NPs) on performance, oxidative enzymes and blood parameters in broiler chicks. Pakistan Veterinary Journal, 2012, 32, no. 3: 325–328. ISSN: 0253-8318 (print), 2074-7764 (online).
16. Ognik K., Sembratowicz I., Cholewińska E., Wlazło L., Nowakowicz-Dębek B., Szlązak R., Tutaj K. The effect of chemically synthesized silver nanoparticles on performance and the histology and microbiological profile of the jejunum in chickens. Annals of Animal Science, 2016, 16, no. 2: 439–450. http://dx.doi.org/10.1515/aoas-2015-0067.
17. Kulak E., Ognik K., Stępniowska A., Sembratowicz I. The effect of administration of silver nanoparticles on silver accumulation in tissues and immune and antioxidant status of chickens. Journal of Animal and Feed Science, 2018, 27, no. 1: 44–54. https://doi.org/10.22358/jafs/84978/2018.
18. Dosoky W.M., Fouda M.M.G., Alwan A.B., Abdelsalam N.R., Taha A.E., Ghareeb R.Y., El Aassar M.R., Khafaga A.F. Dietary supplementation of silver silica nanoparticles promotes histological, immunological, ultrastructural, and performance parameters of broiler chickens. Scientific Reports, 2021, 11: 4166. https://doi.org/10.1038/s41598-021-83753-5.
19. Vadalasetty K.P., Lauridsen C., Engberg R.M., Vadalasetty R., Kutwin M., Chwalibog A., Sawosz E. Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni. BMC Veterinary Research, 2018, 14:1. https://doi.org/10.1186/s12917-017-1323-x.
20. Grodzik M., Sawosz E. The influence of silver nanoparticles on chicken embryo development and bursa of Fabricius morphology. Journal of Animal and Feed Science, 2006, 15, suppl. 1: 111–114. https://doi.org/10.22358/jafs/70155/2006.
21. Sawosz E., Grodzik M., Lisowski P., Zwierzchowski L., Niemiec T., Zielinska M., Szmidt M., Chwalibog A. Influence of hydrocolloids of Ag, Au, and Ag/Cu alloy nanoparticles on the inflammatory state at transcriptional level. Bulletin of the Veterinary Institute in Pulawy, 2010, 54, no. 1: 81–85. ISSN: 0042-4870.
22. Pineda L., Sawosz E., Hotowy A., Elnif J., Sawosz J., Ali A., Chwalibog A. Effect of nanoparticles of silver and gold on metabolic rate and development of broiler and layer embryos. Comparative Biochemical Physiology, Part A, 2012, 161, no. 3: 315–319. DOI:10.1016/j.cbpa.2011.11.013.
23. Sawosz F., Pineda L.M., Hotowy A.M., Hyttel P., Sawosz E., Szmidt M., Niemiec T., Chwalibog A. Nanonutrition of chicken embryos. The effect of silver nanoparticles and glutamine on molecular responses, and the morphology of pectoral muscle. Baltic Journal of Comparative & Clinical Systems Biology, 2012, 2: 29–45. https://doi.org/10.7136/bjccsb.2012.2.0029.
24. Bhanja S.K., Hotowy A., Mehra M., Sawosz E., Pineda L., Vadalasetty K.P., Kurantowicz N., Chwalibog A. In ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos. International Journal of Molecular Sciences, 2015, 16, no. 5: 9484–9503. https://doi.org/10.3390/ijms16059484.
25. Pineda L., Sawosz E., Lauridsen C., Engberg R.M., Elnif J., Hotowy A., Sawosz F., Chwalibog A. Influence of in ovo injection and subsequent provision of silver nanoparticles on growth performance, microbial profile, and immune status of broiler chickens. Open Access Animal Physiology, 2012, 4: 1–8. http://dx.doi.org/10.2147/OAAP.S35100.
26. Orobchenko O.L., Roman’ko M.Y., Kutsan O.T. The impact of potential feed additive nanocomposite (Ag, Cu, Fe, Mn dioxide) on eggs’ quality parameters of laying hens compared with metal salts. Journal for Veterinary Medicine, Biotechnology and Biosafety, 2015, 1: 10–13. ISSN / EISSN: 2411-3174 / 2411-0388, http://nbuv.gov.ua/UJRN/jvmbb_2015_1_3_4.
27. Katarzyńska-Banasik D., Grzesiak M., Kowalik K., Sechman A. Administration of silver nanoparticles affects ovarian steroidogenesis and may influence thyroid hormone metabolism in hens (Gallus domesticus). Ecotoxicology and Environmental Safety, 2021, 208: 111427. https://doi.org/10.1016/j.ecoenv.2020.111427.
28. Sawosza E., Bineka M., Grodzika M., Zieliñskaa M., Sysaa P., Szmidt M., Niemiec T., Chwalibog A. Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Archives of Animal Nutrition, 2007, 61, no. 6: 444–451. https://doi.org/10.1080/17450390701664314.
29. Farzinpour A., Karashi N. The effects of nanosilver on egg quality traits in laying Japanese quail. Applied Nanoscience, 2013, 3: 95–99. https://doi.org/10.1007/s13204-012-0097-5.
30. Rezaei A., Farzinpour A., Vaziry A., Jalili A. Effects of silver nanoparticles on hematological parameters and hepatorenal functions in laying Japanese quails. Biological trace element research, 2018, 185, no. 2: 475–485. https://doi.org/10.1007/s12011-018-1267-4.
31. Ibrahim F.A., Elkloub K., El Mousafa M., El Sabry M.I., Badr J.M., Hassan A.S.I. Effect of egg disinfection by silver nanoparticles on eggshell microbial load, hatchability and post-hatch performance of quail chicks. International Journal of Poultry Science, 2018, 17, no. 5: 234–242. https://scialert.net/abstract/?doi=ijps.2018.234.242.
32. Gnanadhas D.P., Thomas M.B., Thomas R., Raichur A.M., Chakravorttya D. Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrobial Agents and Chemotherapy, 2013, 57, no. 10: 4945–4055. https://doi.org/10.1128/AAC.00152-13.
33. Thiyagarajan K., Bharti V.K., Tyagi S., Tyagi P.K., Ahuja A., Kumar K., Raja T., Kumar B. Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application. RSC Advances, 2018, 8: 23213–23229. https://doi.org/10.1039/C8RA03649G.
34. Zheltonozhskaya Т.B., Permyakova N.M., Kondratiuk T.O., Beregova T.V., Klepko V.V., Melnik B.S. Hybrid-stabilized silver nanoparticles and their biological impact on hospital infections, healing wounds, and wheat cultivation. French-Ukrainian Journal of Chemistry, 2019, 7, no. 2: 20–39. https://doi.org/10.17721/fujcV7I2P20-39.
35. Zheltonozhskaya T.B., Permyakova N.M., Kravchenko O.O., Maksin V.I., Nessin S.D., Klepko V.V., Klymchuk D.O. Polymer/inorganic hybrids containing silver nanoparticles and their activity in the disinfection of fish aquariums/ponds. Polymer-Plastic Technology and Material, 2021, 60, no. 4: 369–391. https://doi.org/10.1080/25740881.2020.1811318.
36. Zheltonozhskaya T., Permyakova N., Eremenko B. Inter- and intramolecular polycomplexes in polydispersed colloidal systems, Chapter 8. In book: Hydrogen-bonded interpolymer complexes: formation, structure and application / Eds. V. Khutoryanskiy, G. Staikos. World Scientific: New Jersey-London-Singapore etc, 2009, 201–234. ISBN-10: 9812707859; ISBN-13: 978-9812707857.
37. Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry, Part B, 2003, 107, no. 3: 668–677. https://doi.org/10.1021/jp026731y.
38. Liz-Marzan L.M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir, 2006, 22, no. 1: 32–41. https://doi.org/10.1021/la0513353.
39. Li L., Zhu Y.-J. High chemical reactivity of silver nanoparticles toward hydrochloric acid. Journal of Colloid and Interface Science, 2006, 303, no. 2: 415–418. https://doi.org/10.1016/j.jcis.2006.07.059.
40. Ghișe A. The pH of the digesta in the gastrointestinal tract, in laying hens. Bulletin of UASVM, Veterinary Medicine, 2009, 66: 491–492. ISSN 1843-5270; Electronic ISSN 1843-5378.
41. Ghișe A., Olariu L., Trif A., Zehan R., Cărpinisan L. The determination of the mean retention time (MRT) of the dry matter in the segments of the gastrointestinal tract in laying hens. Bulletin of UASVM, Veterinary Medicine, 2009, 66: 378–383. ISSN 1843-5270; Electronic ISSN 1843-5378.
42. SCCS (Scientific Committee on Consumer Safety), Opinion on solubility of synthetic amorphous silica (SAS), 20-21 June 2019, SCCS/1606/2019. Corrigendum of 6 December 2019. https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_228.pdf
43. Huang S.-Y., Lipp D.W., Farinato R.S. Acrylamide Polymers. In book: Encyclopedia of Polymer Science and Technology. Vol 1. / John Wiley & Sons, 2002, 41–79. https://doi.org/10.1002/0471440264.pst004.
44. Farrokhi S., Ahari H., Abedini M.R. Comparative effects of colloidal silver nanoparticles used in packaging film and spray in inactivating bacteria experimentally added to chicken eggshells. International Journal of Food Properties, 2017, 20, no. 10: 2314–2322. https://doi.org/10.1080/10942912.2016.1236274.
45. Batkowska J., Al-Shammari K.I.A., Gryzinska M.M., Brodacki A., Wlazlo L., Nowakowicz-Debek B. Effect of using colloidal silver in the disinfection of hatching eggs on some microbial, hatchability and performance traits in Japanese quail. European Poultry Science, 2017, 81. ISSN 1612-9199, DOI:10.1399/eps.2017.211.
46. Chmielowiec-Korzeniowska A., Tymczyna L., Dobrowolska M., Banach M., Nowakowicz-Dębek B., Bryl M., Drabik A., Tymczyna-Sobotka M., Kolejko M. Silver (Ag) in tissues and eggshells, biochemical parameters and oxidative stress in chickens. Open Chemistry, 2015, 13: 1269–1274. https://doi.org/10.1515/chem-2015-0140.
47. Kumar I., Bhattacharya J. Assessment of the role of silver nanoparticles in reducing poultry mortality, risk and economic benefits. Applied Nanoscience, 2019, 9: 1293–1307. https://doi.org/10.1007/s13204-018-00942-x.