2023 (3) 5

https://doi.org/10.15407/polymerj.45.03.221

POLYANILINE, HALLOYSITE NANOTUBES AND THEIR NANOCOMPOSITE AS ADSORBENTS FOR ORGANIC DYES

Yu.V. Noskov,
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, 50 Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: yuriy.noskov@gmail.com
ORCID: 0000-0002-4192-1733
V.N. Bliznyuk,
Environmental Engineering & Earth Sciences, Clemson University, Clemson, SC 29634, USA,
e-mail: vblizny@clemson.edu
ORCID: 0000-0002-3883-6941
A.A. Pud,
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, 50 Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: alexander.pud@gmail.com
ORCID: 0000-0002-0681-633X
Polym. J., 2023, 45, no. 3: 221-231.

Section: Structure and properties.

Language: Ukrainian.

Abstract:

This work is devoted to the study of the adsorption efficiency of methylene blue and methyl orange dyes by polyaniline base (PANI), halloysite nanotubes (HNTs), and their nanocomposite (HNTs/PANI). PANI and the nanocomposite were prepared by the chemical oxidative polymerization of aniline in the absence and presence of HNTs followed by subsequent dedoping by ammonia solution. The morphology and thermal stability of the adsorbents were explored. In particular, the TEM method showed that the nanocomposite consisted of practically non-agglomerated nanoparticles with a “core-shell” morphology. Particles of pure polymer are quite agglomerated and form massive aggregates. The kinetics of decreasing the concentration of dyes in solutions upon their contact with adsorbent powders was studied by the method of electron spectroscopy. The HNTs/PANI nanocomposite was found to absorb both dyes with slightly higher efficiency than the PANI base probably due to more developed surface of the former. Processing of the obtained results of adsorption of both dyes on the studied adsorbents according to different kinetic models (pseudo-first and pseudo-second order and intraparticle diffusion) showed that in all cases this process is best described by the pseudo-second order model, which indicates the chemical nature of adsorption. The calculated adsorption capacity of the adsorbents under study appeared be quite close to the experimental one. These materials can be used as effective adsorbents for cleaning wastewaters from organic dyes.

Key words: polyaniline, halloysite, nanocomposite, adsorption, organic dyes.

REFERENCES

1. Garg V., Amita M., Kumar R., Gupta R. Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste. Dyes and Pigments, 2004, 63, no. 3: 243–250. https://doi.org/10.1016/j.dyepig.2004.03.005.
2. Beyene H.D., Habtu N.G. Removal of methylene blue dye from textile wastewater using activated carbon prepared from rice husk. Int. J. of Innova. and Sci. Res., 2014, 9, no. 2: 317–325. ISSN: 2351-80.
3. Hamed M.M., Ahmed I.M., Metwally S.S. Adsorptive removal of methylene blue as organic pollutant by marble dust as eco-friendly sorbent. J. of Industr. and Engin. Chem., 2014, 20, no. 4: 2370–2377. https://doi.org/10.1016/j.jiec.2013.10.015.
4. Green F.J. The Sigma-Aldrich handbook of stains, dyes and indicators. Milwaukee, Wisconsin: Aldrich Chemical Company Inc., 1990: 461. ISBN-13:978-0-94163322-2.
5. Duhan M., Kaur R. Adsorptive removal of methyl orange with polyaniline nanofibers: an unconventional adsorbent for water treatment. Environmen. Tech., 2020, 43, no. 23: 2977–2990. https://doi.org/10.1080/09593330.2019.1593511.
6. Sandberg R.G., Henderson G.H., White R.D., Eyring E.M. Kinetics of acid dissociation-ion recombination of aqueous methyl orange. The J. of Phys. Chem., 1972, 76, no. 26: 4023–4025. https://doi.org/10.1021/j100670a024.
7. Fortunate P.S., Misael S.N. Removal of methyl orange (MO) from water by adsorption onto modified local clay (kaolinite). Phys. Chem., 2016, 6, no. 2: 39–48. https://doi: 10.5923/j.pc.20160602.02.
8. Lafi R., Hafiane A. Removal of methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs). J. of the Taiwan Instit. of Chem. Engin., 2016, 58: 424–433. https://doi.org/10.1016/j.jtice.2015.06.035.
9. Wojna´rovits L., Taka´cs E. Irradiation treatment of azo dye containing wastewater: an overview. Radiation Phys. and Chem., 2008, 77: 225–244. https://doi.org/10.1016/j.radphyschem.2007.05.003.
10. Pron A., Ranou P. Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci., 2002, 27: 135–190. https://doi.org/10.1016/S0079-6700(01)00043-0.
11. Nalwa H.S. Handbook of organic conductive molecules and polymer. 2, Wiley, 1997. ISBN: 978-0-471-96813-9.
12. Bhadra S., Khastgir D., Singha N.K., Lee J.H. Progress in preparation, processing and applications of polyaniline. Progress in Polym. Sci., 2009, 34: 783–810. https://doi.org/10.1016/j.progpolymsci.2009.04.003.
13. Gao X., Jing X., Li Y., Zhu J., Zhang M. Synthesis and characterization of phosphorized polyaniline doped with phytic acid and its anticorrosion properties for Mg-Li alloy. J. of Macromol. Sci., Part A: Pure and App. Chem., 2018, 55, no. 1: 24–35. https://doi.org/10.1080/10601325.2017.1387485.
14. Ansari R., Mohammad Z.M., Keivani M.B., Khah A.M. Adsorption of cationic dyes from aqueous solutions using polyaniline conducting polymer as a novel adsorbent. J. Adv. Sci. Res., 2011, 2: 27–34. ISSN: 0976-9595.
15. Stejskal Ja. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. Chem. Papers, 2020, 74: 1–54. https://doi: 10.1007/s11696-019-00982-9.
16. Lyu W., Li J., Trchová M., Wang G., Liao Y., Bober P., Stejskal Ja. Fabrication of polyaniline/poly(vinyl alcohol)/montmorillonite hybrid aerogels toward efficient adsorption of organic dye pollutants. J. Hazard. Mater., 2022, 435: 129004. https://doi.org/10.1016/j.jhazmat.2022.129004.
17. Joussein E., Petit S., Churchman J., Theng B., Righi D., Delvaux B. Halloysite clay minerals – a review. Clay Minerals, 2005, 40: 383–426. https://doi.org/10.1180/0009855054040180.
18. Kamble R., Ghag M., Gaikawad S., Panda B.K. Halloysite nanotubes and applications: a review. J. Adv. Scient. Res., 2012, 3, no. 2: 25–29. ISSN: 0976-9595.
19. Rawtani D., Agrawal Y.K. Multifariuos applications of halloysite nanotubes: a review. Rev. Adv. Mater. Sci., 2012, 30: 282-295.
20. Khodagholy D., Doublet T., Gurfinkel M., Quilichini P., Ismailova E., Leleux P., Herve T., Sanaur S., Bernard C. Highly conformable conducting polymer electrodes for in vivo recordings. Advanc. Mat., 2011, 23, no. 36: H268–H272. https://doi.org/10.1002/adma.201102378.
21. Zhao M., Liu P. Adsorption behavior of methylene blue on halloysite nanotubes. Micropor. and Mesopor. Mater., 2008, 112: 419–424. https://doi.org/10.1016/j.micromeso.2007.10.018.
22. Martinez C., Iverson B.L. Rethinking the term “pi-stacking”. Chem. Sci., 2012, 3: 2191–2201. https://doi.org/10.1039/C2SC20045G.
23. Duhan M., Kaur R. Phytic acid doped polyaniline nanofibers: an advanced adsorbent for methylene blue dye. Environmen. Nanotech. Monitoring & Management, 2019, 12: 100248. https://doi.org/10.1016/j.enmm.2019.100248.
24. Duhan M., Kaur R. Adsorptive removal of methyl orange with polyaniline nanofibers: an unconventional adsorbent for water treatment. Environmen. Tech., 2020, 43, no. 23: 2977–2990. https://doi.org/10.1080/09593330.2019.1593511.
25. Noskov Yu., Ogurtsov N., Bliznyuk V., Lvov Yu., Myronyuk I., Pud A. Synthesis and properties of core-shell halloysite–polyaniline nanocomposites. Applied Nanoscience, 2022, 12: 1285–1294. https://doi.org/10.1007/s13204-021-01812-9.
26. Trchova M., Moravkova Z., Šeděnkova I., Stejskal J. Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 2012, 66: 415–445. https://doi.org/10.2478/s11696-012-0142-6.
27. Meng Y., Wang M., Tang M., Hong G., Gao J., Chen Y. Preparation of robust superhydrophobic halloysite clay nanotubes via mussel-inspired surface modification. Applied Sciences, 2017, 7: 1129. https://doi.org/10.3390/app7111129.
28. Gaaz T.S., Sulong A.B., Kadhum A.A.H., Al-Amiery A.A., Nassir M.H., Jaaz A.H. The impact of halloysite on the thermo-mechanical properties of polymer composites. Molecules, 2017, 22: 838. https://doi.org/10.3390/molecules22050838.
29. Feng J., Fan H., Zha D., Wang L., Jin Z. Characterizations of the formation of polydopamine-coated halloysite nanotubes in various pH environments. Langmuir, 2016, 32: 10377–10386. https://doi.org/10.1021/acs.langmuir.6b02948.
30. Trchová M., Matějka P., Brodinová J., Kalendová A., Prokeš J., Stejskal J. Structural and conductivity changes during the pyrolysis of polyaniline base. Polym. Degrad. and Stabil., 2006, 91, no. 1: 114–121. https://doi.org/10.1016/j.polymdegradstab.2005.04.022.
31. Pielichowski K. Kinetic analysis of the thermal decomposition of polyaniline. Solid State Ion., 1997, 104: P. 123–132. https://doi.org/10.1016/S0167-2738(97)00396-2.
32. Melgoza D., Hernández-Ramírez A., Peralta-Hernández J.M. Comparative efficiencies of the decolourisation of methylene blue using Fenton’s and photo-Fenton’s reactions. Photochemical & Photobiological Sciences, 2009, 8: 596–599. https://doi.org/10.1039/b817287k.
33. Sydorko M., Nesterivska S., Yatsyshyn M., Marchuk I., Dumanchuk N., Serkiz R., Zelinskyi A., Reshetniak O. Adsorbtsiia Cr(VI) polianilinom ta kompozytom tseolit/polianilin-sulfatna kyslota. Visnyk Lvivskoho universytetu. Seriia khimichna, 2022, Vypusk 63: 314–336. ISSN 2078-5615. https://doi.org/10.30970/vch.6301.314.
34. Siryk O.O., Samchenko Yu.M., Poltoratska T.P., Kryklia S.O., Trokhymchuk A.K. Adsorbtsiia barvnykiv riznoi pryrody na porystykh sorbentakh na osnovi polivinilformaliu. Dopov. Nac. akad. nauk Ukr., 2019, 6: 54–60. https://doi.org/10.15407/dopovidi2019.06.054.
35. Zhao M., Liu P. Adsorption behavior of methylene blue on halloysite nanotubes. Microporous and Mesoporous Materials, 2008, 112: 419–424. https://doi.org/10.1016/j.micromeso.2007.10.018.
36. Sakr F., Alahiane S., Sennaoui A., Dinne M., Bakas I., Assabbane A. Removal of cationic dye (Methylene Blue) from aqueous solution by adsorption on two type of biomaterial of South Morocco. Materials Today: Proceedings, 22, part 1: 93–96. https://doi.org/10.1016/j.matpr.2019.08.101.
37. Ba Th.L., Alkurdi A.Q., Lukács I.E., Molnár J., Wongwises S., Gróf G., Szilágyi I.M. A novel experimental study on the rheological properties and thermal conductivity of halloysite nanofluids. Nanomaterials, 2020, 10: 1834. https://doi.org/10.3390/nano10091834.
38. Hadi H.M., Wahab H.S. Visible Light Photocatalytic Decolourization of Methyl orange using N-doped TiO2 nanoparticles. Journal of Al-Nahrain University, 2015, 18, no. 3: 1–9. https://doi:10.22401/JNUS.18.3.01.
39. Xie Y., Qian D., Wu D., Ma X. Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chemical Engineering Journal, 2011, 168: 959–963. https://doi:10.1016/j.cej.2011.02.031.