2023 (3) 6

https://doi.org/10.15407/polymerj.45.03.232

THERMODYNAMICS, MORPHOLOGY AND DYNAMIC-MECHANICAL PROPERTIES OF POLYURETHANE AND NANOCOMPOSITES BASED ON IT, CONTAINING HYDROXY-POSS

L.V. Karabanova,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivs’ke shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0002-5909-0042
L.A. Honcharova,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivs’ke shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0003-2529-9945
N.V. Babkina,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivs’ke shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0002-1803-0887
D.O. Klymchuk,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivs’ke shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0002-7076-8213
Polym. J., 2023, 45, no. 3: 232-241.

Section: Structure and properties.

Language: Ukrainian.

Abstract:

Nanocomposites based on polyurethane matrix consisting of an adduct of trimethylolpropane with toluene diisocyanate and a bifunctional polyester of poly(diethylene glycol) adipinate with mol. weight 2000, and contained 1,2-propanediolisobutyl-POSS with the amount of 1–10 %, were synthesized. The thermodynamic compatibility, dynamic-mechanical properties and morphology of the created nanocomposites were investigated. For the purpose of calculations the thermodynamic parameters of interactions between the components of POSS-containing nanocomposites, a study of the isothermal sorption of methylene chloride vapors by the created systems was conducted. The sorption of methylene chloride vapors by the samples of the native PU, POSS-containing nanocomposites and nanofiller was studied using a vacuum instalation with McBean balances. The values of the free energy of polyurethane and POSS mixing during the formation of the nanocomposites were calculated based on the concentration dependences of Ägm – the average free energy of mixing of individual components (polyurethane and POSS) and nanocomposites with methylene chloride, according to the thermodynamic cycles proposed by A.A. Tager. It is shown that polyurethane and hydroxy-POSS demonstrate thermodynamic incompatibility during the formation of nanocomposites. The free energy of mixing polyurethane and hydroxy-POSS have positive values at all concentrations of the nanofiller.

By the method of dynamic-mechanical analysis investigations it was shown that the introduction of POSS into polyurethane matrix led to a shift of the tan δ maximum in the direction of increasing temperatures. The temperature values of the tan δ peak for nanocomposites with increasing POSS content increased from 38 to 47 °C for PU1 and PU10, respectively. With the introduction of the POSS nanofiller into the polyurethane matrix, the intensity of the tan δ peak also decreased. Therefore, it was shown that the introduction of hydroxy-POSS into the polyurethane matrix leads to suppression of segmental motions in polyurethane, to an increase in the glass transition temperature of nanocomposites, and to an increase in the modulus of elasticity of nanocomposites compared to the native matrix. It is assumed that this happens due to the fact that the part of hydroxy-POSS, which was not incorporated into the polyurethane chain, is concentrated in the flexible segments of polyurethane as a nanofiller. When studying the morphology of the created nanocomposites using scanning electron microscopy, it was found that starting from a content of 3 % of hydroxy-POSS, it forms agglomerates of nanoparticles in the polyurethane matrix, which increase in size when the content of hydroxy-POSS increases.

Key words: nanocomposites, 1,2-propanediolisobutyl-POSS, polyurethane, thermodynamics of interactions, dynamic mechanical properties, morphology.

References

1. Bourbigot S., Duquesne S., Fontaine G., Bellayer S., Turf T., Samyn F. Characterization and reaction to fire of polymer nanocomposites with and without conventional flame retardants. Mol. Cryst. Liq. Cryst., 2008, 486(1): 325/[1367]–339/[1381]. https://doi.org/10.1080/15421400801921983.
2. Fomenko A.A., Gomza Yu.P., Klepko V.V., Gumenna M.A., Klimenko N.S., Shevchenko V.V. Dielectric properties, conductivity and structure of urethane composites based on polyethylene glycol and polyhedral silsesquioxane. Polym. J. (Ukr.), 2009, 31(2): 137–143.
3. Zhou H., Chua M.H., Xu J. Functionalized POSS-based hybrid composites. In: Polymer composites with functionalized nanoparticles. Synthesis, properties, and applications. Pielichowski K., Majka T.M. (eds), Elsevier, 2019: 179–210. https://doi.org/10.1016/B978-0-12-814064-2.00006-8 .
4. Gomza Y.P., Bliznyuk V.N., Gumenna M.A., Shevchuk A.V., Klymenko N.S., Shevchenko V.V. Sintez i struktura segmentirovannykh poliefiruretanov na osnove smesi poliedral’nykh oligosilseskvioksanov. Reports of the National Academy of Sciences of Ukraine (Rus.), 2008, 10: 142–147. ISSN 1025-6415. http://nbuv.gov.ua/UJRN/dnanu_2008_10_28.
5. Kuo S.W., Chang F.C. POSS related polymer nanocomposites. Prog. Polym. Sci., 2011, 36: 1649–1696. https://doi.org/10.1016/j.progpolymsci.2011.05.002.
6. Gomza Y.P., Fomenko A.A., Nesin S.D., Gumenna M.A., Klymenko N.S., Shevchenko V.V., Klepko V.V. Osobennosti formirovaniya struktury organo-neorganicheskikh nanokompozitov na osnove silseskvioksansoderzhashchikh poliefiramidouretanov. Nanosystems, Nanomaterials, Nanotechnologies (Rus.), 2008, 6(3): 965–976. http://dspace.nbuv.gov.ua/handle/123456789/76184.
7. Janowski B., Pielichowski K. Thermo(oxidative) stability of novel polyurethane/POSS nanohybrid elastomers. Thermochim. Acta, 2008, 478: 51–53. https://doi.org/10.1016/j.tca.2008.08.015.
8. He W., Song P., Yu B., Fang Z., Wang H. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Progress in Materials Science, 2020, 114, 100687. https://doi.org/10.1016/j.pmatsci.2020.100687.
9. Hebda E., Ozimek J., Raftopoulos K.N., Michałowski S., Pielichowski J., Jancia M., Pielichowski K. Synthesis and morphology of rigid polyurethane foams with POSS as pendant groups or chemical crosslinks. Polym. Adv. Technol., 2015, 26(8): 932–940. https://doi.org/10.1002/pat.3504.
10. Fu B.X., Hsiao B.S., White H., Rafailovich M., Mather P.T., Jeon H.G., Phillips S., Lichtenhan J., Schwab J. Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer. Polym. Int., 2000, 49: 437–440. https://doi.org/10.1002/(sici)1097-0126(200005)49:5<437::aid-pi239>3.0.co;2-1.
11. Oaten M., Choudhury N. R. Silsesquioxane−urethane hybrid for thin film applications. Macromolecules. 2005, 38(15): 6392–6401. http://dx.doi.org/10.1021/ma0476543.
12. Zhang W., Camino G., Yang R. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Prog. Polym. Sci., 2017, 67: 77–125. http://dx.doi.org/10.1016/j.progpolymsci.2016.09.011.
13. Kazemi F., Mir Mohamad Sadeghi G., Kazemi H.R. Synthesis and evaluation of the effect of structural parameters on recovery rate of shape memory polyurethane-POSS nanocomposites. Eur. Polym. J., 2019, 114: 446–451. https://doi.org//10.1016//j.eurpolymj.2018.12.041.
14. Joshi M., Adak B., Butola B.S. Polyurethane nanocomposite based gas barrier films, membranes and coatings: A review on synthesis, characterization and potential applications. Prog. Mat. Sci., 2018, 97: 230–282. https://doi.org/10.1016/ j.pmatsci.2018.05.001.
15. Gumenna M.A., Shevchuk A.V., Klimenko N.S., Shevchenko V.V. Polyurethanes on the base of polyhedral oligosilsesquioxanes (POSS). Polym. J. (Ukr.), 2007, 29(3): 177–185.
16. Chattopadhyay D.K., Webster D.C. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci., 2009, 34: 1068–1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002.
17. Madbouly S.A., Otaigbe J.U. Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Prog. Polym. Sci., 2009, 34: 1283–1332. https://doi.org/10.1016/j.progpolymsci.2009.08.002.
18. Marzec M., Kucińska-Lipka J., Kalaszczyńska I., Janik H. Development of polyurethanes for bone repair. Materials Science and Engineering: C. 2017, 80: 736–747. https://doi.org/10.1016/j.msec.2017.07.047.
19. Lloyd A.W., Faragher R.G., Denyer S.P. Ocular biomaterials and implants. Biomaterials, 2001, 22: 769–785. https://doi.org/10.1016/S0142-9612(00)00237-4.
20. Karabanova L.V., Lloyd A.W., Mikhalovsky S.V., Helias M., Philips G.J., Rose S.F., Mikhalovska L., Boiteux G., Sergeeva L.M., Lutsyk E.D., Svyatyna A. Polyurethane/Poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks for biomedical applications. J. Mater. Sci. Matter. Med., 2006, 17: 1283–1296. https://doi.org/10.1007/s10856-006-0603-y.
21. Bershtein V.A., Gun`ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A.A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. RSC Adv., 2013, 3: 14560–14570. https://doi.org/10.1039/c3ra40295a.
22. Blanko I. Decomposition and ageing of hybrid materials with POSS. In: Polymer/POSS nanocomposites and hybrid materials. Preparation, properties, applications, Kalia S., Pielichowski K. (eds), Switzerland: Springer, 2018: 415–462. https://doi.org/10.1007/978-3-030-02327-0_13.
23. Hebda E., Pielichowski K. Polyurethane/POSS Hybrid Materials. In: Polymer/POSS Nanocomposites and Hybrid materials: Preparation, Properties, Applications, Kalia S, Pielichowski K (eds), Switzerland: Springer, 2018: 167–204. https://doi.org/10.1007/978-3-030-02327-0_5.
24. Karabanova L.V., Bershtein V.A., Sukhanova T.E., Yakushev P.N., Egorova L.M., Lutsyk E.D., Svyatyna A.V., Vylegzhanina M.E. 3D diamond-containing nanocomposites based on hybrid polyurethane–poly(2-hydroxyethyl methacrylate) semi-IPNs: Composition-nanostructure-segmental dynamics-elastic properties relationships. J. Pol. Sci. B, 2008, 46: 1696–1712. https://doi.org/10.1002/polb.21506.
25. Karabanova L.V., Whitby R.L.D., Bershtein V.A., Korobeinyk A.V., Yakushev P.N., Bondaruk O.M., Lloyd A.W., Mikhalovsky S.V. The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multi-walled carbon nanotube composites with low filler content. Colloid Polym. Sci., 2013, 291: 573–583. https://doi.org/10.1007/s00396-012-2745-4.
26. Karabanova L.V., Whitby R.L.D., Korobeinyk A., Bondaruk O., Salvage J.P., Lloyd A.W., Mikhalovsky S.V. Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Comp. Sci. Tech., 2012, 72: 865–872. https://doi.org/10.1016/j.compscitech.2012.02.008.
27. Madhavan K., Reddy B.S.R. Structure–gas transport property relationships of poly(dimethylsiloxane–urethane) nanocomposite membranes. J. Mem. Sci., 2009, 342: 291–299. https://doi.org/10.1016/j.memsci.2009.07.002.
28. Mahapatra S.S., Yadav S.K., Cho J.W. Nanostructured hyperbranched polyurethane elastomer hybrids that incorporate polyhedral oligosilsesquioxane. React. Funct. Polym., 2012, 72: 227–232. https://doi.org/10.1016/j.reactfunctpolym.2012.02.001.
29. Lewicki J.P., Pielichowski K., Jancia M., Hebda E., Albo R.L.F., Maxwell R.S. Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polym. Degrad. Stab., 2014, 104: 50–56. http://dx.doi.org/10.1016/j.polymdegradstab.2014.03.025.
30. Wei K., Wang L., Zheng S. Organic–inorganic polyurethanes with 3, 13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polym. Chem., 2013, 4: 1491–1501. https://doi.org/10.1039/c2py20930f.
31. Bourbigot S., Turf T., Bellayer S., Duquesne S. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym. Degrad. Stab., 2009, 94: 1230–1237.
32. Huang J., Jiang P., Li X., Huang Y. Synthesis and characterization of sustainable polyurethane based on epoxy soybean oil and modified by double-decker silsesquioxane. J. Mater. Sci., 2015, 51(5): 2443–2452. https://doi.org/10.1007/s10853-015-9557-0.
33. Karabanova L.V., Honcharova L.A., Sapsay V.I., Klymchuk D.O. Synthesis, morphology and thermal properties of the POSS-containing polyurethane nanocomposites. Chem. Phys. Tech. Surf., 2016, 7: 413-420. https://doi.org/10.15407/hftp07.04.413.
34. Karabanova L.V., Honcharova L.A., Babkina N.V., Sapsay V.I., Klymchuk D.O. POSS-containing nanocomposites based on polyurethane/poly(hydroxypropyl methacrylate) polymer matrix: dynamic mechanical properties and morphology. Polym. Testing, 2018, 69: 556–562. https://doi.org/10.1016/j.polymertesting.2018.06.012.
35. Wang W., Guo Y., Otaigbe J.U. The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites. Polymer, 2009, 50: 5749–5757. https://doi.org/10.1016/j.polymer.2009.05.037.
36. Lai Y.S., Tsai C.W., Yang H.W., Wang G.P., Wu K.H. Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Mat. Chem. Phys., 2009, 117(1): 91–98. https://doi.org/10.1016/j.matchemphys.2009.05.006.
37. Huitron-Rattinger E., Ishida K., Romo-Uribe A., Mather P.T. Thermally modulated nanostructure of poly(ε–caprolactone)–POSS multiblock thermoplastic polyurethanes. Polymer, 2013, 54(13): 3350–3362. https://doi.org/10.1016/j.polymer.2013.04.015.
38. Karabanova L.V., Boiteux G., Gain O., Seytre G., Sergeeva L.M., Lutsyk E.D. Miscibility and thermal and dynamic mechanical behaviour of semi-interpenetrating polymer networks based on polyurethane and poly(hydroxyethyl methacrylate). Polym. Int., 2004, 53(12): 2051–2058. https://doi.org/10.1002/pi.1627.
39. Tager A.A. Phiziko-chimiya polimerov. M.: Khimiya, 1978: 544. ISBN 978-545-828-195-9.
40. Tager A.A. Termodinamicheskaya ustoychivost’ sistem polimer-rastvoritel’ i polimer-polimer. Vysokomolekulyarnyye soyedineniya, ceriya A, 1972, 14(12): 2690–2706.
41. Karabanova L.V., Honcharova L.A., Shtompel V.I. Nanocomposites based on polyurethane matrix and 1,2-propanediolisobutyl-POSS: structure and morphological peculiarities. Polym. J. (Ukr.), 2020, 42(2): 85–95. https://doi.org/10.15407/polymerj.42.02.085.
42. Karabanova L.V., Honcharova L.A., Busko N.A., Ostapiuk S.M. The study of intermolecular interactions in the POSS-containing nanocomposites based on polyurethane and polyurethane/poly(hydroxypropyl methacrylate) matrices. Polym. J. (Ukr.), 2022, 44(4): 304-315. https://doi.org/10.15407/polymerj.44.04.304.