2024 (1) 3
https://doi.org/10.15407/polymerj.46.01.030
PHYSICOCHEMICAL AND STRUCTURAL CHARACTERISTICS OF HYBRID NANOCOMPOSITES BASED ON BRANCHED POLYIMIDE WITH A LOW CONTENT OF INORGANIC COMPONENT
Nataliia Kozak* (ORCID: 0000-0001-6200-4048), Tetiana Shantalii (ORCID: 0000-0001-8540-217X), Kateryna Dragan (ORCID: 0000-0002-9948-9875), Stanislav Nesin (ORCID: 0000-0003-2162-3533)
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske highway, Kyiv, 02155, Ukraine,
*e-mail: kozaksmalt@ukr.net
Polym. J., 2024, 46, no. 1: 30-36.
Section: Structure and properties.
Language: English.
Abstract:
The series of organic-inorganic hybrid nanocomposites based on branched polyimide matrix and with different amounts of tetraethoxysilane (TEOS) (5, 20, and 50 wt.% of the initial polyamic acid mass) were synthesized and studied using nitroxyl paramagnetic probe, measuring dielectric permittivity, X-ray structural analysis and optical microscopy. It was shown that in some cases the introduction of inorganic component is accompanied by a decrease in the segmental mobility of polyimide matrix as a result of the partial immobilization of organic macrochains during the formation of inorganic microregions. In the presence of inorganic component, a weak dependence of the polymer permeability on the content of the organic component in the system is observed, also the specific density changes little with an increase in TEOS content. Extreme changes in the segmental mobility and dielectric permittivity of the branched matrix formed in the presence of 5 wt% TEOS were found compared to systems of other compositions. This can be caused to a large extent by structural changes in the system. At a low content of TEOS occurs significant «loosening» of organic matrix, a sharp decrease in the dielectric constant and a significant increase in the segmental mobility of the polyimide matrix. Small angle X-ray scattering diffractograms demonstrate drastic changes in polyimide composite heterogeneity in the presence of 5 wt.% TEOS content. According to the optical microscopy data, the introduction of TEOS into polyimide is accompanied by the formation of microaggregates of inorganic nanoparticles in the system, the number and average size of which depend on the SiO2 content and looks most homogeneous at a low TEOS content.
Key words: branched polyimide, hybrid nanocomposite, paramagnetic probe, dynamic characteristics, permeability.
References
1. Zhang C., Zhang M., Cao H. Zhang Z., Wang Z., Gao L., Ding M. Synthesis and properties of a novel isomeric polyimide/SiO2 hybrid material. Composites Sci. and Technology, 2007, 67: 380–389. https://doi.org/10.1016/j.compscitech.2006.09.014.
2. Qiu F., Zhou Y., Liu J., Zhang X. Preparation, morphological and thermal stability of polyimide/ silica hybrid material containing dye NBDPA. Dyes and Pigments, 2006, 71: 37 – 42. https://doi.org/10.1016/j.dyepig.2005.05.009.
3. Ahmad Z., Mark J.E. Polyimide-ceramic hybrid composites by the sol-gel route. Chem. Mater., 2001, 13, no. 10: 3320-3330. https://doi.org/10.1021/cm010175n.
4. Privalko V. P., Shantalii T. A., Privalko E. G. Chapter 4 in: K Friedrich, S. Fakirov, Z. Zhang (Ed.) Polymer-Composites: From Nano- to Macroscale. – Springer, 2005: 63-76 https://doi.org/10.1007/0-387-26213-X_4.
5. Musto P., Ragosta G., Scarinizi G. Mascia L. Polyimide-silica nanocomposites: spectroscopic, morphological and mechanical investigation. Polymer, 2004, 45: 1697–1706. https://doi.org/10.1016/j.polymer.2003.12.044.
6. Kozak N. V., Shantalii T. A., Dragan K. S. Nitroxyl probe dynamics and structural peculiaritiers of the polyimide based nanocomposites. Polymer Journal (Ukr), 2011, 33, no. 1: 32-37.
7. Veksli Z., Andreis M., Rakvin B. ESR spectroscopy for the study of polymer heterogeneity. Progress in Polym. Sci., 2000, 28: 507-557. https://doi.org/10.1016/S0079-6700(00)00025-3
8. Buchachenko A. L., Kovarskiy A. L., Vasserman A. M. In Advances in Polymer Science (Z. A. Rogovin ed.) – NY: Wiley, 1974.
9. Kozak N.V. The method of nitroxyl probes for the study of molecular dynamics and heterogeneous structure of metal-containing polymers. Polimernyi Zhurnal (Ukr), 2009, 31: 207-213.
10. Shantalii T. A., Drahan E. S., Fomenko A. A, Klepko V. V. Syntesis and properties of nanocomposites based on polyimide and tetraethoxysilane. Polimernyi Zhurnal (Ukr), 2009, 31, no. 4: 353-357.
11. Kozak N.V., Shantalii T.A., Drahan K.S., Vorontsova L O., Klepko V.V., Molecular mobility in the polyimide based organic-inorganic composites. Polimernyi Zhurnal (Ukr.), 2015, 37, no. 3: 229-234 https://doi.org/10.15407/polymerj.37.03.229.
12. Toroptseva A. M., Belogorodskaya K. V., Bondarenko V. M. Laboratory workshop on chemistry and technology of macromolecular compounds (Laboratornyu praktikum po khimii i tekhnologii vysokomolekuliarnykh soedineniy). – M.: Khimiia, 1972: 415p.
13. Lipatov Yu., Shilov V., Gomza Yu., Krugliak N. X-ray methods for analysis of polymer system. (Rus.) Kiev: Naukova Dumka, 1982.
14. Kozak N. V., Shantalii T. A., Lobko E. V., Dragan K. S., Klepko V. V. Molecular mobility in organic-inorganic compo-sites based on polyimide with card substituents. Polimernyi Zhurnal (Ukr), 2011, 33, no. 4: 356-360.
15. Klepko V. V., Nizelsky Yu. M., Mnih N. V., Slisenko V. I., Vasylkevich O. A. Dynamics of low molecular probes in nanostructured polyurethane networks containing Co(acac)3. Nanosystems, nanomaterials, nanotechnologies, 2008, 6, no. 3: 949–964. https://www.imp.kiev.ua/nanosys/en/articles/2008/3/nano_vol6_iss3_p0949p0964_2008_abstract.html.
16. Kozak N.V., Kosyanchuk L.F. Heterogeneity and phase separation of metal containing simultaneous semi-interpe-netrating polymer networks. Reaction kinetics vs complex formation. New Materials, Compounds and Applications 2017, l, no. 1: 18-26. http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/V1N1/KozakN.pdf
17. Maier G. Low dielectric constant polymers for microelectronics. Prog.Polym.Sci, 2001, 26: 3–65. https://doi.org/10.1016/S0079-6700(00)00043-5.
18. Pang Z., Sun H., Guo Y., Du J., Li L., Li Q. et al. Research Advances of Porous Polyimide—Based Composites with Low Dielectric Constant. Polymers, 2023, 15: 3341. https://doi.org/10.3390/polym15163341.
19. Tsai M.-H., Whang W.-T. Low dielectric polyimide/poly(silsesquioxane)- like nanocomposite material. Polymer, 2001, 42: 4197–4207. https://doi.org/10.1016/S0032-3861(00)00805-3.
20. Kozak N.V., Shantalii T.A. Physical aging of organo-inorganic nanocomposites based on polyimide with card substituents. Polimernyi Zhurnal (Ukr), 2021, 43, no. 4: 295-303. https://doi.org/10.15407/polymerj.43.04.295.
21. Kozak N.V., Shantalii T.A. Influence of the structure of an inorganic component on the permeability of low molecular probe into organo-inorganic polyimide nanocomposites based on tetraethoxysilane and methyltriethoxysilane. Voprosy khimii i khimicheskoi tekhnologii, 2020, no. 2: 67–72. https://doi.org/10.32434/0321-4095-2020-129-2-67-72.
22. Shantalii T.A., Karpova I.L., Dragan K. S., Privalko E. G., Karaman V. M., Privalko V. P. Properties of an organosilicon nanophase generated in a poly(amide imide) matrix by the sol-gel technique. Polym.Adv.Technol, 2005, 16: 1-5. https://doi.org/10.1002/pat.596.
23. Shantalii T.A., Nesin S.D., Dragan K.S., Karpova I.L., Bokhvan S.I., Minenko M.M., Rukhailo M.V. Structure and properties of polyimide-containing organo-inorganic nanocomposites. Polimernyi Zhurnal (Ukr), 2019, 41, no. 3: 167-172. https://doi.org/10.15407/polymerj.41.03.167.