2024 (1) 7

https://doi.org/10.15407/polymerj.46.01.066

THERMODYNAMICS OF INTERACTIONS AND STRUCTURAL PECULIARITIES OF INTERPENETRATING POLYMER NETWORKS BASED ON POLYURETHANE AND COPOLYMER OF 2-HYDROXYETHYL METHACRYLATE WITH METHACRYLOYLOXYETHYLPHOSPHORYLCHOLINE

Liudmyla KARABANOVA1(ORCID: 0000-0002-5909-0042), Oksana BONDARUK1 (ORCID: 0000-0003-0481-2121), Dmytro KLYMCHUK2 (ORCID: 0000-0002-7076-8213)
1Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske highway, Kyiv, 02155, Ukraine,

2N.G.Kholodny Institute of Botany NAS of Ukraine. 2, Tereshchenkivska str., Kyiv 01004, Ukraine

Polym. J., 2024, 46, no. 1: 66-74.

Section: Structure and properties.

Language: Ukrainian.

Abstract:

Interpenetrating polymer networks based on biocompatible components – polyurethane and copolymer of 2-hydroxyethyl methacrylate with methacryloyloxyethylyphosphorylcholine (HEMA-MPC) were synthesized and thermodynamic parameters of interactions in the system and morphology were investigated. The thermodynamic parameters of interactions between polymer components of the IPNs were calculated based on sorption isotherms of methylene chloride vapors by samples of the created polymer systems. It is shown that MPC plays the role of a compatibilizer in the system, increasing the thermodynamic compatibility between polyurethane and the HEMA-MPC copolymer at small amounts of the copolymer in the IPNs. As the amount of copolymer HEMA-MPC in the IPNs increases, the value of the free energy of the polyurethane and copolymer mixing shifts to the positive value, which is associated with the formation of ionic clusters of MPC. This may mean that with an increasing amount of the MPC in the system, interactions between the negatively charged phosphoryl groups and the positively charged nitrogen atom of various MPC polymer chains occur, i.e., the part of intermolecular interactions (polyurethane and copolymer) decreases, while the part of intramolecular interactions (between different groups of MPC) increases. The results of the morphology investigations of the IPN samples are consistent with the data of the thermodynamic compatibility study of polymers during the formation of the IPNs. With a significant increase in the positive values of the free energy of the polyurethane and copolymer mixing in the IPNs with 41 % and 51 % of the copolymer content, a significant phase separation is observed in the IPNs, with phase inclusions ranging from 1 to 5 mm.

Key words: interpenetrating polymer networks, polyurethane, copolymer of 2-hydroxyethyl methacrylate with methacrylo-yloxyethylphosphorylcholine, thermodynamics, morphology, materials for biomedical applications.

References

1. Zhao Q., Topham N., Anderson J.M. et al. Foreign-body giant cells and polyurethane biostability: In vivo correlation of cell adhesion and surface cracking. J. Biomed. Mater. Res. 1991, 25, no 2: 177–183. https://doi.org/10.1002/jbm.820250205.
2. Wu Y., Zhao Q., Anderson J.M. et al. Effect of some additives on the biostability of a poly(ether urethane) elastomer. J. Biomed. Mater. Res. 1991, 25, no 6: 725–798. https://doi.org/10.1002/jbm.820250604.
3. Zhao Q. H., McNally A. K., Rubin K. R. et al. Human plasma α2-macroglobulin promotes in vitro oxidative stress cracking of pellethane 2363-80A: In vivo and in vitro correlations. J. Biomed. Mater. Res. 1993, 27, no 3: 379–388. https://doi.org/10.1002/jbm.820270311.
4. Han D.K., Park K.D., Ahn K.D. et al. Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes. J. Biomed. Mater. Res. 1989, 23, S13: 87–104. https://doi.org/10.1002/jbm.820231309.
5. Kang, I.K., Kwon O.H., Kim M.K. et al. In vitro blood compatibility of functional group-grafted and heparin-immobilized polyurethanes prepared by plasma glow discharge. Biomaterials 1997, 18, no 16: 1099–1107. https://doi.org/10.1016/S0142-9612(97)00035-5.
6. Ishihara K., Hanyuda H., Nakabayashi N. Synthesis of phospholipid polymers having a urethane bond in the side chain as coating material on segmented polyurethane and their platelet adhesion-resistant properties. Biomaterials 1995, 16, no 11: 873–879. https://doi.org/10.1016/0142-9612(95)94150-J.
7. Flemming R.G., Proctor R.A., Cooper S.L. Bacterial adhesion to functionalized polyurethanes. J. Biomater. Sci. Polym. Ed. 1999, 10, no 6: 679–697.
https://doi.org/10.1163/156856299X00874.
8. Mathur A.B., Collier T.O., Kao W.J. et al. In vivo biocompatibility and biostability of modified polyurethanes. J. Biomed. Mater. Res. 1997, 36, no 2: 246–257.
https://doi.org/10.1002/(SICI)1097-4636(199708)36:2<246::AID-JBM14>3.0.CO;2-E .
9. Sugiyama K., Fukuchi M., Kishida A. et al. Preparation and characterization of poly (2-methacryloyloxyethyl phosphorylcholine-co-methyl methacrylate) graft copolyetherurethanes. Kobunshi Ronbunshu 1996, 53, no 1: 48–56. http://doi.org/10.1295/koron.53.48.
10. Ishihara K., Tanaka S., Furukawa N. et al. Improved blood compatibility of segmented polyurethanes by polymeric additives having phospholipid polar groups I. Molecular design of polymeric additives and their functions. J. Biomed. Mater. Res. 1996, 32, no 3: 391–399.
https://doi.org/10.1002/(SICI)1097-4636(199611)32:3<391::AID-JBM12>3.0.CO;2-K.
11. Ishihara K., Shibata N., Tanaka S. et al. Improved blood compatibility of segmented polyurethane by polymeric additives having phospholipid polar group II. Dispersion state of the polymeric additive and protein adsorption on the surface. J. Biomed. Mater. Res. 1996, 32, no 3: 401–408. https://doi.org/10.1002/(SICI)1097-4636(199611)32:3<401::AID-JBM13>3.0.CO;2-J .
12. Iwasaki Y., Aiba Y., Morimoto N. et al. Semi-interpenetrating polymer networks composed of biocompatible phospholipid polymer and segmented polyurethane. J. Biomed. Mater. Res. 2000, 52, no 4: 701–708. https://doi.org/10.1002/1097-4636(20001215)52:4<701::AID-JBM15>3.0.CO;2-6 .
13. Roh H.W., Song M.J., Han D.K. et al. Effect of cross-link density and hydrophilicity of PU on blood compatibility of hydrophobic PS/hydrophilic PU IPNs. J. Biomater. Sci. Polym. Ed. 1999, 10, no 1: 123–143. https://doi. org/10.1163/156856299X00324.
14. Lee J.H., Ju Y.M., Kim D.M. Platelet adhesion onto segmented polyurethane film surfaces modified by addition and crosslinking of PEO-containing block copolymers. Biomaterials 2000, 21, no 7: 683–691. https://doi.org/10.1016/S0142-9612(99)00197-0.
15. Abbasi F., Mirzadeh H., Katbab A. A. Modification of polysiloxane polymers for biomedical applications: a review. Polym. Int. 2001, 50, no 12: 1279–1287. https://doi.org/10.1002/pi.783.
16. Ishihara K., Ueda T., Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym. J. 1990, 22, no 5: 355–360. https://doi.org/10.1295/polymj.22.355.
17. Ueda T., Oshida H., Kurita K. et al. Preparation of 2-methacryloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym. J. 1992, 24, no 11: 1259–1269. https://doi.org/10.1295/polymj.24.1259 .
18. Ishihara K., Ziats N.P., Tierney B.P. et al. Protein adsorption from human plasma is reduced on phospholipid polymers. J. Biomed. Mater. Res. 1991, 25, no 11: 1397–1407. https://doi.org/10.1002/jbm.820251107.
19. Ishihara K., Nomura H., Mihara T. et al. Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 1998, 39, no 2: 323–330. https://doi.org/10.1002/(sici)1097-4636(199802)39:2<323::aid-jbm21>3.0.co;2-c.
20. Ishihara K., Iwasaki Y., Nojiri C. Phospholipid polymer biomaterials for making ventricular assist devices. J. Congest Heart Fail Circ. Support 2001, 1, no 4: 256–270. https://doi.org/10.1201/b14731-22.
21. Yoneyama T., Ishihara K., Nakabayashi N. et al. Short-term in vivo evaluation of small-diameter vascular prosthesis composed of segmented poly(etherurethane)/2-methacryloyloxyethyl phosphorylcholine polymer blend. J. Biomed. Mater. Res. 1998, 43, no 1: 15–20. https://doi.org/10.1002/(sici)1097-4636(199821)43:1%3C15::aid-jbm2%3E3.0.co;2-p.
22. Yoneyama T., Ito M., Sugihara K. et al. Small diameter vascular prosthesis with a nonthrombogenic phospholipid polymer surface: preliminary study of a new concept for functioning in the absence of pseudo- or neointima formation. Artif. Organs 2000, 24, no 1: 23–28. http://doi.org/10.1046/j.1525-1594.2000.06433.x.
23. Ishihara K., Fujita H., Yoneyama T. et al. Antithrombogenic polymer alloy composed of 2-methacryloyloxyethyl phosphorylcholine polymer and segmented polyurethane. J. Biomater. Sci. Polym. Edn. 2000, 11, no 11: 1183–1195. http://doi.org/10.1163/156856200744264.
24. Lloyd A.W., Faraghe R.G.A., Denyer S.P. Ocular biomaterials and implants. Biomaterials 2001, 22, no 8: 769–785. https://doi.org/10.1016/s0142-9612(00)00237-4.
25. Lowe A.B., Vamvakaki M., Wassall M.A. et al. Well-defined sulfobetaine-based statistical copolymers as potential antibioadherent coatings. J. Biomed. Mater. Res. 2000, 52, no 1: 88–94. https://doi.org/10.1002/1097-4636(200010)52:1%3C88::aid-jbm11%3E3.0.co;2-#.
26. Karabanova L.V., Mikhalovsky S.V., Sergeeva L.M. et al. Semi-interpenetrating polymer networks based on polyurethane and poly(vinyl pyrrolidone) obtained by photopolymerization: Structure-property relationships and bacterial adhesion. Polym. Eng. Sci. 2004, 44, no 5: 940–947. http://doi.org/10.1002/pen.20085.
27. Karabanova L.V., Sergeeva L.M., Mikhalovsky S.V. et al. Semi-interpenetrating polymer networks based on polyurethane and polyvinylpyrrolidone for cardiovascular and assistant devices. In Proceedings of the 9 International Conference “Polymers in Medicine and Surgery,” Krems, Austria, September 2000: 13.
28. Karabanova L.V., Lloyd A., Mikhalovsky S. et al. Polyurethane/poly (hydroxyethyl methacrylate) semi-interpenetrating polymer networks for biomedical applications. J. Mater. Sci.: Mater. Med., 2006, 17, no 12: 1283–1296. http://doi.org/10.1007/s10856-006-0603-y.
29. Lipatov Y.S., Karabanova L.V. Gradient interpenetrating polymer networks. In book: Advances in interpenetrating polymer networks. Volume 4. Ed.: D. Klempner, K.C. Frisch. Technomic publ.: Lancaster, USA, 1994: 191-212. ISBN:1-56676-091-7.
30. Lipatov Y.S. Karabanova L.V. Gradient interpenetrating polymer networks. Journal of Materials Science 1995, V.30: 1095-1104. https://doi.org/10.1007/BF01178451.
31. Karabanova L.V., Mikhalovsky S., Lloyd A. et al. Gradient semi-interpenetrating polymer networks based on polyurethane and poly (vinyl pyrrolidone). J. Mater. Chem. 2005, 15, no 4: 499–507. http://doi.org/10.1039/b410178b.
32. Lipatov Y.S., Karabanova L.V., Sergeeva L.M. Thermodynamic state of reinforced interpenetrating polymer networks. Polymer International 1994, 34, no 1: 7–13. https://doi.org/10.1002/pi.1994.210340102.
33. Dror M., Elsabee M.Z., Berry G.C. Interpenetrating polymer networks for biological applications. Biomat., Med. Dev., Art. Org. 1979, 7, no 1: 31–39. https://doi.org/10.3109/10731197909119370.
34. Predecki P. A method for Hydron impregnation of silicone rubber. J. Biomed. Mater. Res. 1974, 8, no 6: 487–489. https://doi.org/10.1002/jbm.820080615.
35. Nair P.D., Krishnamurthy V.N. Polyurethane–poly(methyl methacrylate) interpenetrating polymer networks. I. Synthesis, characterization, and preliminary blood compatibility studies. J. Appl. Polym. Sci. 1996, 60, no 9: 1321–1327. https://doi.org/10.1002/(SICI)1097-4628(19960531)60:9%3C1321::AID-APP7%3E3.0.CO;2-L.
36. Tager A.A. Phiziko-chimiya polimerov. M.: Khimiya, 1978: 544. ISBN 978-545-828-195-9.
37. Karabanova L.V., Honcharova L.A., Babkina N.V. The thermodynamics of interactions and relaxation properties of the poss-containing nanocomposites based on polyurethane-poly(hydroxypropyl methacrylate) matrix, which is formed by the principle of IPNS. Polymer Journal (Ukr). 2021, 43, no 4: 268—279. https://doi.org/10.15407/polymerj.43.04.268.
38. Tager A.A. Thermodynamic stability of polymer-solvent and polymer-polymer systems. Polymer Science U.S.S.R., 1972, 14(12): 3129–3147. https://doi.org/10.1016/0032-3950(72)90355-3.
39. Lipatov Y.S., Karabanova L.V., Hramova T.S., Sergeeva L.M. The physicochemical properties of interpenetrating polymer networks based on a polyurethane and a polyurethane-acrylate. Polymer Science USSR, 1978, 20(1): 51-61. https://doi.org/10.1016/0032-3950(78)90111-9.
40. Lipatov Y.S., Karabanova L.V., Sergeeva L.M., Gorichko E.Y. Sorption and diffusion study of mutually penetrating networks based on polyurethane and its ionomer. Polymer Science USSR 1982, 24(1):126–134. https://doi.org/10.1016/0032-3950(82)90087-9.
41. Lipatov Y.S., Karabanova L.V., Sergeeva L.M., Gorbach L.A., Skiba S.I. Thermodynamic study of interpenetrating polymer networks based on polyurethane and polyesteracrylate Vysokomolekulyarnyye soyedineniya, seriya A, 1986, 28, no 4: 274–277.
42. Karabanova L.V., Boiteux G., Seytre G. et al. Phase separation in the polyurethane/poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks synthesized by different ways. Polym. Eng. Sci. 2008, 48, no 3: 588–597. https://doi.org/10.1002/pen.20965.