2024 (2) 2

https://doi.org/10.15407/polymerj.46.02.096

The effect of dispersion time of montmorillonite on the dielectric properties and conductivity of systems based on polyethylene glycol

Serhii Bilyi1* (ORCID: 0000-0002-6967-9037), Eduard Lysenkov2** (ORCID: 0000-0002-1369-4609), Valery Klepko1 (ORCID: 0000-0001-8089-8305)

1Institute of Macromolecular chemistry NAS of Ukraine, 48, Kharkivske Highway, Kyiv, 02155, Ukraine,
2Petro Mohyla Black Sea National University, 10, 68 Desantnykiv Str., Mykolaiv, 54003, Ukraine
*e-mail: sergeybilyi@gmail.com
**e-mail: ealysenkov@ukr.net

Polym. J., 2024, 46, no. 2: 96-102.

Section: Structure and properties.

Language: Ukrainian.

Abstract:

In this work, the effect of ultrasonic dispersion time on the dielectric properties and conductivity of nanocomposites was studied. Model systems based on polyethylene glycol and montmorillonite (PEG-MMT) were prepared. All samples had the same composition and filler content (5% by weight), and the ultrasonic treatment time ranged from 5 to 12 minutes. To determine the dependence of the properties of the systems on the dispersion time, the method of dielectric relaxation spectroscopy was used.

It was found that an increase in the dispersion time leads to an increase in the dielectric constant of the systems. The effect of increasing the dispersion time on the dielectric constant in the case of the PEG-MMT system is similar to the effect caused by increasing the nanoclay content due to the decrease in the mobility of the macromolecular segments and the partial intercalation of the polymer into the interlayer space of the MMT. When analyzing the relaxation characteristics of the investigated systems, it was found that as the dispersion time increases, the relaxation regions shift toward higher frequencies, while the relaxation time decreases. This phenomenon is explained by the inhibition of the segmental mobility of the macromolecules due to the increase in the number of steric hindrances caused by the delamination of MMT. In addition, there may have been an increase in the number of charge carriers that are released during the intercalation of the polymer into the interlayer space of MMT, leading to their contribution to the dielectric properties in the form of conductivity relaxation. The experimental values of electrical conductivity at alternating current for the PEG-MMT system were modeled using the Jonscher equation. From the obtained parameters, a change in the degree of interaction between the charge carriers and the matrix was revealed, which is a consequence of the initial delamination of montmorillonite plates, and then their subsequent aggregation into denser structures, the area of interaction with the polymer matrix is much smaller.

Key words: nanocomposites, montmorillonite, dielectric relaxation spectroscopy, ultrasonic dispersion, polyethylene glycol.

REFERENCES

1. Darwish MSA, Mostafa MH, Al-Harbi LM. Polymeric Nanocomposites for Environmental and Industrial Applications. Int J Mol Sci. 2022, 23(3): 1023. https://doi.org/10.3390/ijms23031023.
2. Karthick L., Rathinam R., Kalam S. A. et al. Influence of Nano-/Microfiller Addition on Mechanical and Morphological Performance of Kenaf/Glass Fibre-Reinforced Hybrid. Composites Journal of Nanomaterials. 2022, Article ID 9778224, https://doi.org/10.1155/2022/9778224.
3. Nagy D., Kókai E. Polymer-Based Nanocomposites with Nanoclay. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 448: 012021. https://doi.org/10.1088/1757-899X/448/1/012021.
4. Vilarinho F., Vaz M.F., Silva A.S. The Use of Montmorillonite (MMT) in Food Nanocomposites: Methods of Incorporation, Characterization of MMT/Polymer Nanocomposites and Main Consequences in the Properties. Recent Pat Food Nutr Agric. 2020, 11(1):13–26. https://doi.org/10.2174/2212798410666190401160211.
5. Soykan C., Akbay M. In-Situ Synthesis of Polymer–Clay Nanocomposites: Exfoliation of Organophilic Montmorillonite Nanolayers in Poly 2-ThiozylMethacrylamide. Journal of Material Science and Technology Research. 2016, 6: 22–33. https://doi.org/10.31875/2410-4701.2019.06.4.
6. You L., Liu B., Hua H., Jiang H., Yin C., Wen F. Energy Storage Performance of Polymer-Based Dielectric Composites with Two-Dimensional Fillers. Nanomaterials. 2023, 13(21):2842. https://doi.org/10.3390/nano13212842.
7. Amin K. F., Sen A., Hoque M. E. Polymer nanocomposites for energy. Chapter 13. In book: Advanced Polymer Nanocomposites. Woodhead Publishing. Ed.: Hoque E., Ramar K., Sharif A., Woodhead Publishing: 2022, ISBN: 978-0-12-824492-0 https://doi.org/10.1016/B978-0-12-824492-0.00007-6.
8. Pandey, J. C., & Singh, M. Dielectric polymer nanocomposites: Past advances and future prospects in electrical insulation perspective. SPE polymers, 2021, 2(4): 236–256 https://doi.org/10.1002/pls2.10059.
9. Latif S., Izhar F. Imran M., Hussain N., Bilal M. Polymer nanocomposites for dielectric and energy storage applications, Chapter 20. In book: Smart Polymer Nanocomposites: 435-460, Ed.: Ali N., Bilal M., Khan A., Gupta R.K., Nguyen T.A. Elsevier: 2023, ISBN: 978-0-323-91611-0, https://doi.org/10.1016/B978-0-323-91611-0.00016-5.
10. Wang S., Luo Z., Liang J., Hu J., Jiang N., He J., Li Q. Polymer Nanocomposite Dielectrics: Understanding the Matrix/Particle Interface ACS Nano 2022, 16, 9: 13612–13656 https://doi.org/10.1021/acsnano.2c07404.
11. Anwar N, Ishtiaq M, Shakoor A, et al. Dielectric properties of polymer/clay nanocomposites. Polymers and Polymer Composites. 2021, 29, 6: 807–813. https://doi.org/10.1177/0967391120953250.
12. Yu G., Cheng Y., Duan Z. Research Progress of Polymers/Inorganic Nanocomposite Electrical Insulating Materials. Molecules. 2022, 27, 22: 7867. https://doi.org/10.3390/molecules27227867.
13. David E., Fréchette M., Zazoum B., Daran-Daneau C., Ngô A. D., Couderc H. Dielectric Properties of PE/Clay Nanocomposites. Journal of Nanomaterials, 2013, Article ID 703940, http://dx.doi.org/10.1155/2013/703940.
14. Madusanka N., Shivareddy S. G., Eddleston M. D., Hiralal P., Oliver R. A., Amaratunga, G. A. Dielectric behaviour of montmorillonite/cyanoethylated cellulose nanocomposites. Carbohydrate Polymers, 2017, 172: 315–321. http://dx.doi.org/10.1016/j.carbpol.2017.05.057.
15. Bilyi S.A., Lysenkov E.A., Nesin S.D., Klepko V.V. Effect of montmorillonite dispersion time on the structure and thermophysical properties of systems based on polyethylene glycol. Polimernyi Zhurnal, 2022, 44, 4: 283–289. https://doi.org/10.15407/polymerj.44.04.283.
16. Bilyi S.A., Lysenkov E.A., Nesin S.D., Klepko V.V. Effect of mixing time on the structure and thermophysical characteristics of systems based on polyethylene glycol and organomodified montmorillonite. Physics of disperse systems, 2023, 61: 8-16. https://doi.org/10.18524/0367-1631.2023.61.290833.
17. Bezrodnaya T.V., Nesprava V.V., Puchkovskaya G.A. et al. Structure and spectroscopic properties of organoclays doped by multiwall carbon nanotubes. Journal of Applied Spectroscopy, 2011, 78: 50–58. https://doi.org/10.1007/s10812-011-9424-y.
18. Lysenkov E.A., Gomza Y.P., Minenko M.M., Klepko V.V. Dielectric properties and conductivity of electrolytes based on oligoethylene glycol and anisometric nanofillers // Polimernyi Zhurnal, 2010, 32, no.1: 17–22.
19. George S., Varughese K. T., Thomas, S. Dielectric properties of isotactic polypropylene/nitrile rubber blends: Effects of blend ratio, filler addition, and dynamic vulcanization. Journal of Applied Polymer Science, 1999, 73, 2: 255–270. https://doi.org/10.1002/(SICI)1097-4628(19990711)73:2<255::AID-APP12>3.0.CO;2-B.
20. Lysenkov E.A., Gomza Yu.P., Klepko V.V., Kunytskyi Yu.A., Kunytska L.Yu. Influence of the nature of mineral nanofillers on the structure and properties of nanocomposites based on polyethylene glycol. Nanosistemy, nanomaterialy, nanotehnolohii 2010, 8, 3: 1001–1016. https://www.imp.kiev.ua/nanosys/ru/articles/2010/3/nano_vol8_iss3_p0675p0689_2010_abstract.html
21. Chen W., Xu Q., Yuan R. Z. Effect on ionic conductivity with modification of polymethylmethacrylate in poly (ethylene oxide)-layered silicate nanocomposites (PLSN). Materials Science and Engineering: B, 2000, 77, 1: 15–18 https://doi.org/10.1016/S0921-5107(00)00448-7.
22. Sinha S., Chatterjee S. K., Ghosh J., Meikap A. K. Analysis of the dielectric relaxation and ac conductivity behavior of polyvinyl alcohol-cadmium selenide nanocomposite films. Polymer Composites, 2015, 38, 2: 287–298. https://doi.org/10.1002/pc.23586.
23. Rebeque, P. V., Silva, M. J., Cena, C. R., Nagashima, H. N., Malmonge, J. A., Kanda, D. H. F. Analysis of the electrical conduction in percolative nanocomposites based on castor‐oil polyurethane with carbon black and activated carbon nanopowder. Polymer Composites, 2019, 40, 1: 7–15 https://doi.org/10.1002/pc.24588.