2024 (2) 6

https://doi.org/10.15407/polymerj.46.02.127

GUANIDINE-CONTAINING ALIPHATIC OLIGOMERS WITH BACTERICIDAL ACTIVITY

Maryna Vortman1* (ORCID: 0000-0003-0092-6009), Iryna Furtat2 (ORCID: 0000-0003-0681-2889),
Polina Vakuliuk2
(ORCID: 0000-0001-7828-1349), Valentyna Lemeshko1 (ORCID: 0000-0003-1916-2301), Andrii Pylypenko3 (ORCID: 0000-0003-0538-1386), Valery Shevchenko1** (ORCID: 0000-0003-2100-4468)
1Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske Highway, Kyiv 02155, Ukraine,
2National University of Kiev Mohyla Academy, 2 Hryhoriya Skovorody St., Kyiv, 04655, Ukraine,
3Donetsk Institute for Physics and Engineering named after O.O. Galkin, National Academy of Sciences
*e-mail: vmar1962@i.ua
**e-mail: valpschevchenko@gmail.com

Polym. J., 2024, 46, no. 2: 127-134.

Section: Polymer synthesis.

Language: Ukrainian.

Abstract:

A method for the synthesis of reactive aliphatic guanidine oligomers (GO) of different MM by the reaction of oligomeric oxyalkylaliphatic diepoxide with guanidine by varying the ratio of the starting components with subsequent neutralization of the obtained product with hydrochloric acid was developed. A characteristic feature of the structure of the obtained GO oligomers is their amphiphilicity, with the presence of hydroxy-containing guanidine fragments both at the ends and inside the chain. The obtained oligomers are reactive to further chemical transformations. The chemical structure of GO was characterized by FTIR and 1H-NMR spectroscopy, molecular weight was determined by liquid chromatography and titration data.

The bactericidal properties of aliphatic guanidine oligomers against a number of gram-positive (Micrococcus luteus, Rhodococcus erythropolis, Rhodococcus rubber, Bacillus megaterium, Bacillus subtilis, Bacillus cereus) and gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Serratia marcescen), depending on the MW of GO were investigated. The minimum inhibitory concentration of aliphatic guanidine oligomers against the studied bacterial strains was determined. It has been shown that the oligomer with the highest content of guanidine fragments has the greatest bactericidal activity and, accordingly, the lowest minimum inhibitory concentration against gram-positive and gram-negative bacteria. The reactive guanidine oligomers obtained by analogy with polyhexamethylene guanidine chloride can be recommended as substances with biocidal and fungicidal properties. In addition, the inherent reactivity of the synthesized GO makes them promising for obtaining various new types of polymers and composites based on them.

Key words: aliphatic guanidine oligomers, bactericidal substances, gram-positive and gram-negative bacteria, minimum inhibitory concentration.

REFERENCES

1. Qian LY., Hui Y.G., Xiao N. Preparation of Guanidine Derivative Polymers as Novel Functional Additives for Value-Added Hygiene Paper. Advanced Materials Research, 2011, 236–238: 2993–2996. https://doi.org/10.4028/www.scientific.net/AMR.236-238.2993.
2. Qian LY., Hui Y.G., Xiao N. Modified guanidine polymers: Synthesis and antimicrobial mechanism revealed by AFM. Polymer, 2008, 49, 10: 2471–2475. https://doi.org/10.1016/j.polymer.2008.03.042.
3. Kitamaki R., Shirai K., Sugino K. Preparation and Properties of Polyhexamethyleneguanidine. Bull. Chem. Soc. Japan., 1968, 41: 1461–1463. https://doi.org/10.1246/bcsj.41.1461.
4. Jung H.N., Zerin T., Podder B., Song H.Y., Kim Y.S. Cytotoxicity and gene expression profiling of polyhexamethylene guanidine hydrochloride in human alveolar A549 cells. Toxicol. In Vitro, 2014, 28: 682–692. https://doi.org/10.1016/j.tiv.2014.02.004.
5. Kim H.-R., Hwang, G.-W., Naganuma, A. Adverse health effects of humidifier disinfectants in Korea: lung toxicity of polyhexamethylene guanidine phosphate J. Toxicolog. Sci., 2016, 41, 6: 711–717. https://doi.org/10.2131/jts.41.711.
6. Park Y., Jeong M., Bang J., et al. Guanidine-based disinfectants, polyhexamethyleneguanidine-phosphate (PHMG-P), polyhexamethylenebiguanide (PHMB), and oligo(2-(2-ethoxy)ethoxyethylguanidiniumchloride (PGH) induce depithelial-mesenchymal transitionin A549 alveolar epithelial cells.. Inhalation Toxicology, 2019, 31, 4: 161–166. https://doi.org/10.1080/08958378.2019.1624896.
7. Vitt A., Sofrata A., Slizen V., et al. Antimicrobial activity of polyhexamethylene guanidine phosphate in comparison to chlorhexidine using the quantitative suspension method Annals of Clinical Microbiology and Antimicrobials, 2015, 14: 36. https://doi.org/10.1186/s12941-015-0097-x.
8. Kha C. K., Grammatikova N. E., Vasilenko I. A., еt al. Comparative in vitro Antibacterial Activity of Polyhexamethylene Guanidine Hydrochloride and Polyhexamethylene Guanidine Succinate. Antibiotics and Chemoterapy, 2013, 58: 3–7.
9. Oule M., Azinwi R., Bernier A., et. al. Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. J. of Med. Microbiol., 2008, 57: 1523–1528. https://doi.org/10.1099/jmm.0.2008/003350-0.
10. Koffi-Nevry R., Manizan A., Tano K., et al. Assessment of the antifungal activities of polyhexamethylene-guanidine hydrochloride (PHMGH)-based disinfectant against fungi isolated from papaya (Carica papaya L.) fruit. African J. Microbiol. Res., 2011, 5, no. 24: 4162–4169. https://doi.org/10.5897/AJMR11.608.
11. Dafu Weia, Qiangxiang Maa, Yong Guan, et. al. Structural characterization and antibacterial activity of oligoguanidine (polyhexamethyleneguanidinehydrochloride). Mater.Sci Engin. C, 2009, 29: 1776–1780 https://doi.org/10.1016/j.msec.2009.02.005.
12. Vortman M.Ya., Lemeshko V.N., Shevchenko V.V. Guanidinium-containing oligomeric cationic protonic ionic liquid Dopov. Nac. akad. nauk Ukr. 2019. 12: 75–82 https://doi.org/10.15407/dopovidi2019.12.075.
13. Vortman M.Ya., Furtat I.M., Vakuliuk P.V., Lemeshko V.N., Shevchenko V.V. Guanidincontaining oligomeric cationic potonic ionic liquids with biocide activity. Polimernyi Zhurnal, 2020, 3: 209–217. https://doi.org/10.15407/polymerj.42.03.209
14. Vakuliuk P.V., Vortman M.Ya., Furtat I.M., Burban A.F., Klymenko N.S., Shevchenko V.V. Track poly(ethylene terephtalate) membranes with antibacterial properties. Polimernyi Zhurnal, 2008, 30, 1: 46–51.
15. Gorobets A. V., Vakuliuk P. V., Furtat I. M., Vortman M. Ya. Bactericidal fluor-containing membranes, which are formed in presence of guanidine, low molecular polymer. Naukovi zapysky. Khimichni nauki i tekhnolohii 2009, 92: 48–52 .
16. Deshmukh M, Singh Y, Gunaseelan S, et al. Biodegradable poly(ethylene glycol) hydrogels based on a self-elimination degradation mechanism. Biomaterials, 2010, 31(26): 6675–6684. https://doi.org/10.1016/j.biomaterials.2010.05.021.
17. Silviya P, Jennie Z, Leach B. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules, 2010, 11: 1348–1357. https://doi.org/10.1021/bm100137q.
18. Saez-Martinez V., Olalde B., Martinez-Redondo D. et al. Degradable poly(ethylene glycol)-based hydrogels: Synthesis, physico-chemical properties and in vitro characterization. J. Bioactive Compatible Polymers: Biomedical Applications, 2014, 29: 270. https://doi.org/10.1177/0883911514528597.
19. Vortman M.Ya., Lemeshko V.N., Goncharenko L.A., Kobylinskyi S.M., Shevchenko V.V., Ostapiuk S.N. Oligomeric guanidine-containing proton cationic ionic liquid. Polimernyi Zhurnal, 2021, 43, 4: 304–310. https://doi.org/10.15407/polymerj.43.04.304.
20. Prasanthi K., Murty D., Saxena N. Evaluation of Antimicrobial Activity of Surface Disinfectants by Quantitative Suspension Method. International Journal of Research in Biological Sciences, 2012, 2(3): 124–127.
21. Gould J. Quantity and Qualityin the Diagnosis of Urinary Tract Infections. British Journal of Urology, 1965, 37, 1: 7–12. https://doi.org/10.1111/j.1464-410X.1965.tb09567.x
22. Bryan L. E. Bacterial resistance and susceptibility to chemotherapeutic agents. Cambridge University Press, UK, 1982: 234. ISBN 0-521-23039 X
23. Furtat І., Nivyevska T., Gorbatko L., Mykhalsky L. Antimicrobial effect of hydrogen peroxide and lysoformin on gram-negative bacteria contaminating food production Magisterium. Pryrodnychi nauky, 2004, 16: 29–35. http://ekmair.ukma.edu.ua/handle/123456789/14117.
24. Vakuliuk P.V., Vortman M.Ya., Furtat I.M., Burban A.F., Klymenko N.S., Shevchenko V.V.
Track poly(ethylene terephtalate) membranes with antibacterial properties. Polimernyi Zhurnal, 2008, 30, 1: 46–51.
25. Lipatov Yu.S., Fajnerman A.E., Shrubovich V.A., Shevchenko V.V. Biankernyye poverkhnostno-aktivnyye veshchestva Dokl. AN USSR, 1984, 10: 41–44.