2024 (3) 1
https://doi.org/10.15407/polymerj.46.03.153
NANOCOMPOSITES BASED ON A HEAT RESISTANT POLYCYANURATE MATRIX
DIANA SHULZHENKO* (ORCID: 0000-0002-5406-5235), ALEXANDER FAINLEIB** (ORCID: 0000-0001-8658-4219)
Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske Highway, Kyiv 02155, Ukraine,
*e-mail: shulzhenko_d@nas.gov.ua
**e-mail: fainleib@i.ua
Polym. J., 2024, 46, no. 3: 153-176.
Section: Review.
Language: Ukrainian.
Abstract:
The review article is devoted to a promising and rapidly developing class of thermosetting polymers – polycyanurates created from cyanate ester resins (CER), in particular, to the synthesis and characterization of the structure and physical properties of their nanocomposites obtained by in situ method using inorganic nanoparticles with an organo-functionalized surface. Cyanate ester resins are very easy to use, and the technology of their processing is close to the technology of manufacturing materials based on traditional epoxy resins. Due to their high heat resistance, cyanate ester resins are increasingly replacing epoxy materials, especially in high-tech industries. An important feature of the synthesis of nanocomposites based on polycyanurates is that almost all functionalized nanoparticles used in the published studies catalyze the high-temperature polycyclotrimerization of dicyanates into polycyanurates. Nanoparticles with reactive groups on a surface, such as hydroxy, phenolic, amine, epoxy, etc. are covalently embedded in the forming polymer network during the synthesis process due to their easy chemical interaction with cyanate groups of the cyanate ester resin. The chemical reactions to such hybridization have been thoroughly studied. This phenomenon prevents an aggregation of nanoparticles and leads to their effective distribution in a polymer matrix, which in turn ensures high performance of the resulting nanocomposites. A specific effect of ultra-low (<1 wt.%) nanofiller concentrations on the glass transition temperature, heat resistance and mechanical strength of the resulting nanocomposites has been established: the glass transition temperature of polycyanurate increases by 40–60 °C with the introduction of 0.01 to 1.00 wt.% of epoxy-functionalized polyhedral oligomeric silsesquioxane (POSS), amino-SiO2, amino-POSS or amino-functionalized montmorillonite (MMT). Increasing the content of nanoparticles above ~2 wt.% usually leads to the opposite effect due to the formation of their aggregates. The areas of industrial application of nanocomposites based on polycyanurates are described. It has been shown that the valuable complex of thermal, dielectric, mechanical, and chemical properties of polycyanurates, as well as their ability for nanostructuring and all kinds of chemical modifications, due to the high reactivity of the cyanate groups of CER, contribute to the wide application of CER, polycyanurates and nanocomposites based on them in various fields of industry instead of traditional epoxy resins. In recent years, the use of CER, its composites and nanocomposites has increased significantly in the aerospace and defense industries, in the manufacture of electrical products and electronics, etc. CER-based products are used as potting resins, binders for carbon, glass and organic plastics, coatings, adhesives in aircraft, helicopters, satellites, antennas, gas turbines, microchips, etc.
Key words: cyanate ester resins, polycyanurates, nanocomposites, polyhedral oligomeric silsesquioxane, heat-resistance.
REFERENCES
1. Chemistry and technology of cyanate ester resins / I. Hamerton (Ed.) – London: Chapman & Hall, 1994: 357. ISBN 978-3-527-62927-5.
2. Nair C.P.R., Mathew D., Ninan K.N. (2001). Cyanate Ester Resins, Recent Developments. In book: New Polymerization Techniques and Synthetic Methodologies. Advances in Polymer Science /Ed.: Springer, Berlin, Heidelberg, 2001: 1–99. ISBN 978-3-540-41435-3. https://doi.org/10.1007/3-540-44473-4_1.
3. Thermostable Polycyanurates: Synthesis, Modification, Structure, and Properties / A. Fainleib (Ed.) – New York: Nova Science Publisher, 2010: 362. ISBN 978-1608769070.
4. Handbook of Thermoset Resins / D. Ratna (Ed.), Shrewsbury: iSmithers, 2009: 410. ISBN: 978-1-84735-410-5.
5. Kandelbauer A. Cyanate Ester Resins, Chapter 11. In book: Handbook of Thermoset Plastics. 4nd / H. Dodiuk (Ed.), Elsevier Inc., 2022: 587–617. DOI: https://doi.org/10.1016/B978-0-12-821632-3.00004-X.
6. High-temperature polymer nanocomposites based on heterocyclic networks from nitrile monomers / V.A.Bershtein, P.N. Yakushev (Ed.), Cham: Springer Nature, 2023: 177. ISBN 978-3-031-32942-5. DOI: https://doi.org/10.1007/978-3-031-32943-2.
7. McConnell V.P. Resins for the Hot Zone, Part II: BMIs, CEs, benzoxazines and phthalonitriles. CW, High Perform. Compos., September, 2009, 21: 49–54. Available online: https://www.compositesworld.com/articles/resins-for-the-hot-zone-part-ii-bmis-ces-benzoxazinesand-phthalonitriles (accessed on 18 August 2009).
8. Pietrowicz S., Four A., Jones S., Canfer S., Baudouy B. Thermal conductivity and Kapitza resistance of cyanate ester epoxy mix and trifunctional epoxy electrical insulations at superfluid helium temperature. Cryogenics, 2011, 52: 100–104. https://doi.org/10.1016/j.cryogenics.2011.12.002.
9. Jayakumari L.S., Sampath P.S., Sarodajevi M. Synthesis and characterization of bis(4-cyanato-3,5-dimethylphenyl)anisylmethane/epoxy/glass fiber composites. J. Appl. Polym. Sci., 2009, 112: 2579–2587. https://doi.org/10.1002/app.29882.
10. Yuan L., Liang G., Gu A. The thermal and dielectric properties of high performance cyanate ester resin/microcapsules composites. Polym. Degrad. Stab., 2011, 96: 84–90. https://doi.org/10.1016/j.polymdegradstab.2010.10.013.
11. Sarodajevi M., Jayakumari L.S., Thulasiraman V., Anuradha G., Sampath P.S. Structural characterization and mechanical and thermal properties of new cyanate / epoxy and cyanate/BMI blends and composites. In book: Polyimides and other high temperatrue polymers: synthesis, characterization and applications. K.L. Mittal (Ed.), Leiden: Koninklijke Brill, 2009: 119–44. ISBN: 978 9004 170 803. https://doi.org/10.1163/ej.9789004170803.i-424.49.
12. Lin R.H., Lee A.C., Lu W.H., Lin C.W. Catalyst effect on cure reactions in the blend of aromatic dicyanate ester and bismaleimide. J. Appl. Polym. Sci., 2004, 94: 345–54. https://doi.org/10.1002/app.20922 .
13. Thunga M., Lio W.Y., Akinc M., Kessler M.R. Adhesive repair of bismaleimide/carbon fiber composites with bisphenol E. Compos. Sci. Technol., 2011, 71: 239–245. https://doi.org/10.1016/j.compscitech.2010.11.021.
14. Wu G., Kou K., Li N., Shi H., Chao M. Electrically conductive adhesive based on bismaleimide-triazine resin filled with micrcoiled carbon fibers. J. Appl. Polym. Sci. 2013, 128: 1164–1169. https://doi.org/10.1002/app.38348.
15. Fainleib A.M. Copolymers and interpenetrating polymer networks of thermoreactive nitrogen-containing resins. Mini review. Polimernyi Zhurnal, 2020, 42, no. 4: 245–253. https://doi.org/10.15407/polymerj.42.04.245.
16. Kessler M., Nicolais L., Borzacchiello A. Cyanate ester resins In book: Wiley encyclopedia of composites. L. Nicolais, A. Borzacchiello (Ed.), Hoboken, New Jersey: John Wiley & Sons, Inc., 2011: 20121–20215. ISBN: 978-0-470-12828-2.
17. Ramirez M.L., Walters R., Lyon R.E., Savitski E.P. Thermal decomposition of cyanate ester resins. Polym. Degrad. Stab., 2002, 78, no. 1: 73–82. https://doi.org/10.1016/S0141-3910(02)00121-0.
18. Uhlig C., Bauer J., Bauer M. Toughening of highly cross-linked polycyanurates with epoxy- and phenol-terminated butadiene-acryloitrile rubbers. Macromol. Symp., 1995, 93: 69–79. https://doi.org/10.1002/masy.19950930111.
19. Uhlig C., Bauer J., Bauer M. Rubber toughening of polycyanurates. Polym. Mater. Sci. Eng., 1995, 71: 748–749.
20. Porter D. S., Bhattacharjee S., Ward T. C. Thermally stable elastomeric tougheners for polycyanurate thermosetting systems. Polym. Mater. Sci. Eng.,1998, 79: 186–187.
21. Fainleib O.M., Grigoryeva О.P. Structure and properties of crosslinked poly(bisphenol A)cyanurate modified by methylethylketone oligoisoprene diacylhydrozone. Polimernyi Zhurnal, 2008, 30, no. 1:14–20. (in Ukrainian).
22. Fainleib A., Grenet J., Garda M.R., Saiter J.M , Grigoryeva O., Grytsenko V., Popescu N., Enescu M. C. Poly(bisphenol A)cyanurate network modified with poly(butylene glycol adipate). Thermal and mechanical properties. Polym. Degr. Stab., 2003, 81, no. 3: 423–430. https://doi.org/10.1016/S0141-3910(03)00127-7.
23. Fainleib A., Grigoryeva O., Pissis P. Modification of polycyanurates by polyethers, polyesters and polyurethanes. Hybrid and interpenetrating polymer networks, Chapter 24. In book: Chemical and Biological Kinetics. New horizons. E.B. Burlakova, A.E. Shilov, S.D. Varfolomeev, G.E. Zaikov (Ed.), Leiden-Boston: VSP International Publ., 2005: 405–437. ISBN 978-0-429-07079-2. https://doi.org/10.1201/b12072-25.
24. Fainleib A., Grigoryeva O., Pissis P. Modification of polycyanurates by polyethers, polyesters and polyurethanes. Hybrid and interpenetrating polymer networks, Chapter 3. In book: Focus on natural and synthetic polymer science. C. Vasile, G.E. Zaikov (Ed.), New York: Nova Science Publishers, 2006, 49–84. ISBN 978-1-600-21115-7
25. Fainleib A., Grigoryeva O., Hourston D. Synthesis of inhomogeneous modified polycyanurates by reactive blending of bisphenol A dicyanate ester and polyoxypropylene glycol. Macromol. Symp., 2001, 164: 429–442. https://doi.org/10.1002/1521-3900(200102)164:1<429::AID-MASY429>3.0.CO;2-I.
26. Fainleib A., Hourston D., Grigoryeva O., Shantalii T., Sergeeva L. Structure development in aromatic polycyanurate networks modified with hydroxyl-terminated polyethers. Polymer, 2001, 42: 8361–8372. https://doi.org/10.1016/S0032-3861(01)00333-0.
27. Fainleib A.M., Grigoryeva O.P., Hourston D.J. Structure-properties relationships for bisphenol A polycyanurate network modified with polyoxytetramethylene glycol. Int. J. Polym. Mat., 2002, 51: 57–75. https://doi.org/10.1080/00914030213025.
28. Grigoryeva O., Fainleib A., Sergeeva L. Thermoplastic polyurethane elastomers in interpenetrating polymer networks, Сhapter 12. In book: Handbook of condensation thermoplastic elastomers, S. Fakirov (Ed.), Weinheim: WILEY-VCH, 2005: 325–354. ISBN 978-3-527-30976-4. https://doi.org/10.1002/3527606610.ch12.
29. Sun Z., Huang P., Gu A., Liang G., Yuan L., Dai S. Novel high performance wave-transparent aluminum phosphate/cyanate ester composites. J. Appl. Polym. Sci., 2012, 123: 1576–1583. https://doi.org/10.1002/app.34695.
30. Sun Z., Gu A., Liang G., Dai S., Yuan L. Novel aluminum phosphate/cyanate ester composites: thermodegradation behaviors and kinetic analyses. J. Appl. Polym. Sci. 2009, 113: 3427–3435. https://doi.org/10.1002/app.30060.
31. Ling W., Gu A., Liang G., Yuan L., Liu J. Dynamic mechanical properties of aluminum nitride/cyanate ester composites for high performance electronic packaging. Polym. Adv. Technol., 2010, 21: 365–370. https://doi.org/10.1002/pat.1436.
32. Zhang M., Gu A., Liang G., Yuan L. Preparation of high thermal conductive aluminum nitride/cyanate ester nanocomposite using a new macromolecular coupling agent. Polym. Adv. Technol., 2011, 23: 1503–1510. https://doi.org/10.1002/pat.2073.
33. Mi Y.N., Liang G., Gu A., Zhao F., Yuan L. Thermally conductive aluminum nitride_multiwalled carbon nanotube/cyanate ester composites with high flame retardancy and low dielectric loss. Ind. Eng. Chem. Res., 2013, 52: 3342–3353. https://doi.org/10.1021/ie3029569.
34. Sheng X., Akinc M., Kessler M.R. Creep behavior of bisphenol E cyanate ester/alumina nanocomposites. Mater. Sci. Eng. A, 2010, 527: 5892–5899. https://doi.org/10.1016/j.msea.2010.05.060.
35. Tang Y., Liang G., Zhang Z., Han J. Performance of aluminum borate whisker reinforced cyanate ester resin. J. Appl. Polym. Sci., 2007, 106: 4131–4137. https://doi.org/10.1002/app.26118.
36. Shen Y., Gu A., Liang G., Yuan L. High performance CaCu3Ti4O12/cyanate ester composites with excellent dielectric properties and thermal resistance. Compos. Part A 2010, 41: 1668–1676. https://doi.org/10.1016/j.compositesa.2010.08.002.
37. Badrinarayanan P., Kessler M.R. Zirconium tungstate/cyanate ester nanocomposites with tailored thermal expansivity. Compos. Sci. Technol., 2011, 71: 1385–1391. https://doi.org/10.1016/j.compscitech.2011.05.004
38. Badrinarayanan P., Rogalski M.K., Kessler M.R. Carbon fiber reinforced cyanate ester/nano ZrW2O8 composites with tailored thermal expansion. Appl. Mater. Interfaces 2011, 4: 510–517. https://doi.org/10.1021/am201165q.
39. Zhang X., Liang G., Chang J., Gu A., Yuan L., Zhang W. The origin of the electric and dielectric behavior of expanded graphite-carbon nanotube/cyanate ester composites with very high dielectric constant and low dielectric loss. Carbon. 2012, 50: 4995–5007. https://doi.org/10.1016/j.carbon.2012.06.027 .
40. Wang X., Jin J., Song M. Cyanate ester resin/graphene nanocomposite: curing dynamics and network formation. Eur. Polym. J. 2012, 48: 1034–1041. https://doi.org/10.1016/j.eurpolymj.2012.03.012.
41. Lin Y., Song M., Stone C.A., Shaw S.J. A comprehensive study on the curing kinetics and network formation of cyanate ester resin/clay nanocomposites. Thermochim. Acta, 2013, 552: 77–86. https://doi.org/10.1016/j.tca.2012.11.009.
42. Wang B., Liang G., Jiao Y., Gu A., Liu L., Yuan L. Two-layer materials of polyethylene and a carbon nanotube/cyanate ester composite with high dielectric constant and extremely low dielectric loss. Carbon, 2013, 54: 224–233. https://doi.org/10.1016/j.carbon.2012.11.033.
43. Yuan W., Chan-Park M.B. Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film. Appl. Mater. Interfaces, 2012, 4: 2065–2073. https://doi.org/10.1021/am300038d.
44. Han C., Gu A., Liang G., Yuan L. Carbon nanotubes/cyanate ester composites with low percolation threshold, high dielectric constant and outstanding thermal property. Compos. Part A, 2010, 41: 1321–1328. https://doi.org/10.1016/j.compositesa.2010.05.016.
45. Fainleib A., Bardash L., Boiteux G. Catalytic effect of carbon nanotubes on polymerization of cyanate ester resins. eXPRESS Polym. Lett., 2009, 3: 477–482. https://doi.org/10.3144/expresspolymlett.2009.59.
46. Yang N., Qi X., Di Yang, Zhang W., Chen M., Wang Y., Huang L., Wang J., Wang S., Mao S., Grigoryeva O., Strizhak P., Fainleib A., Tang J. Improved mechanical, anti-UV irradiation and imparted Luminescence properties of Cyanate Ester Resin/unzipped Multiwalled Carbon Nanotubes/Europium nanocomposites. Materials, 2021, 14: 4244. https://doi.org/10.3390/ma14154244.
47. Hu Z., Zhao D., Wang Y., Gong X., Huang L., Wang J., Wang S., Mao S., Grigoryeva O., Strizhak P., Fainleib A., Tang J. The created excellent thermal, mechanical and fluorescent properties by doping Eu3+-complex-anchored carbon nanotubes in polycyanate resins. Nanomaterials, 2022, 12, no. 12: 2040. https://doi.org/10.3390/nano12122040.
48. Sun W., DeLeo´n E., Ma C., Tan X., Kessler M.R. Novel Si/cyanate ester nanocomposites with multifunctional properties. Compos. Sci. Technol. 2012, 72: 1692–1696. https://doi.org/10.1016/j.compscitech.2012.06.023.
49. Goertzen W.K., Kessler M.R. Thermal expansion of fumed silica/cyanate ester nanocomposites. J. Appl. Polym. Sci., 2008, 109: 647–653. https://doi.org/10.1002/app.28071
50. Lin R.H., Lin C.W., Lee A.C., Chen Y.H., Yen F.S. Highly crosslinked nanocomposites of aromatic dicyanates/SiO2 via the sol-gel method. J. Appl. Polym. Sci., 2007, 103: 1356–1366. https://doi.org/10.1002/app.25433.
51. Bershtein V., Fainleib A., Gusakova K., Kirilenko D., Yakushev P., Egorova L., Lavrenyuk N., Ryzhov V. Silica subnanometer-sized nodes, nanoclusters and aggregates in cyanate ester resin-based networks: structure and properties of hybrid subnano- and nanocomposites. Eur. Polym. J., 2016, 85: 375–389. https://doi.org/10.1016/j.eurpolymj.2016.10.047.
52. Bershtein V., Fainleib A., Kirilenko D., Yakushev P., Gusakova, Lavrenyuk N., Ryzhov V. Incorporating silica into cyanate ester-based network by sol-gel method: Structure and properties of subnano- and nanocomposite. AIP Conference Proceedings, 2016, 1736: 020045 (p. 1-4). https://doi.org/10.1063/1.4949620.
53. Bershtein V., Fainleib A., Kirilenko D., Yakushev P., Gusakova K., Lavrenyuk N., Ryzhov V. Dynamics and properties of high performance amorphous polymer subnanocomposites with ultralow silica content and quasi-regular structure. Polymer, 2016, 103: 36–40. https://doi.org/10.1016/j.polymer.2016.09.020.
54. Zhuo D., Gu A., Liang G., Hu J.T., Yuan L. Preparation and properties of hollow silica tubes/cyanate ester hybrids for high frequency copper-clad laminates. J. Mater. Sci., 2011, 46: 1571–1580. https://doi.org/10.1007/s10853-010-4964-8.
55. Bershtein V., Fainleib A., Yakushev P., Kirilenko D., Egorova L., Grigoryeva O., Ryzhov V., Starostenko O. High performance multi-functional cyanate ester oligomer-based network and epoxy-POSS containing nanocomposites: structure, dynamics, and properties. Polym. Comp., 2020, 41: 1900–1912. https://doi.org/10.1002/pc.25506.
56. Lu T., Liang G., Guu Z. Preparation and characterization of organic-inorganic hybrid composites based on multiepoxy silsesquioxane and cyanate resin. J. Appl. Polym. Sci., 2006, 101: 3652–3658. https://doi.org/10.1002/app.22743.
57. Zhang Z., Gu A., Liang G., Yuan L., Zhuo D. A novel hyperbranched polysiloxane containing epoxy and phosphaphenanthrene groups and its multifunctional modification of cyanate ester resin. Soft Mater., 2013, 11: 346–352. https://doi.org/10.1080/1539445X.2012.658941.
58. Starostenko O., Grigoryeva O., Fainleib A., Saiter J.M., Youssef B., Grande D. Effect of epoxy-functionalized POSS on thermal stability of polycyanurate based nanocomposites. Polimernyi Zhurnal, 2014, 36, no. 3: 233–244. (in Russian).
59. Grigoryeva О.P., Starostenko О.N., Gusakova K.G., Fainleib А.М. Saiter J.M, Youssef B., Grande D. Effect of epoxy-functionalized POSS on chemical structure and viscoelastic properties of polycyanurate based nanocomposites. Polimernyi Zhurnal, 2014, 36, no. 4: 341–351. (in Russian). https://doi.org/10.1002/masy.201300174.
60. Bershtein V., Fainleib А., Egorova L., Grigoryeva O., Kirilenko D., Konnikov S., Ryzhov V., Starostenko O., Yakushev P., Yagovkina M., Saiter J.-M. The impact of ultra-low amounts of introduced reactive POSS nanoparticles on structure, dynamics and properties of densely cross-linked cyanate ester resins. Eur. Polym. J., 2015, 67: 128–142. https://doi.org/10.1016/j.eurpolymj.2015.03.022.
61. Bershtein V., Fainleib A., Yakushev P., Egorova L., Grigoryeva O., Ryzhov V., Starostenko O. Thermostable cyanate ester resins and POSS-containing nanocomposites: influence of matrix chemical structure on their properties. Polym. Adv. Tech., 2016, 27, no. 3: 339–349. https://doi.org/10.1002/pat.3645.
62. Li Z., Chen Y., Liu Y., Teng C., Chen S., Cui W. Enhanced dielectric and mechanical properties of epoxycyanate ester resin by Al2O3 and OMMT. J. Mater. Sci. Mater. Electron, 2020, 31: 8536–8545. https://doi.org/10.1007/s10854-020-03389-5.
63. Fainleib A., Bei I. Influence of montmorillonite on curing kinetics of dicyanate ester of bisphenol A. Reports of the NAS of Ukraine, 2006, no. 7: 157–161. (in Russian).
64. Fainleib O.M., Shtompel V.I., Bei I.M. Nanocomposites based on polycyanurate and montmorillonite. Synthesis and structure. Voprosy khimii i khim.technologii, 2006, no. 4: 92–97. (in Russian).
65. Anthoulis G.I., Kontou E., Fainleib A., Bey I., Gomza Yu. Synthesis and characterization of polycyanurate/montmorillonite nanocomposites. J. Polym. Sci., Part. B., Polym. Phys., 2008, 46: 1036–1049. https://doi.org/10.1002/polb.21436.
66. Bershtein V.A., Fainleib A. M., Pissis P., Bei I. M., Dalmas F., Egorova L. M., Gomza Yu. P., Kripotou S.,Maroulos P., Yakushev P.N. Polycyanurate – organically modified montmorillonite nanocomposites: structure-dynamics-properties relationships. J. Macromol. Sci., Part. B., Polym. Phys., 2008, 47, no. 3: 555–575. https://doi.org/10.1080/00222340801955545.
67. Bershtein V. , Fainleib А., Egorova L., Gusakova K., Grigoryeva O., Kirilenko D., Konnikov S., Ryzhov V., Yakushev P., Lavrenyuk N. The impact of ultra-low amounts of amino-modified MMT on dynamics and properties of densely cross-linked cyanate ester resins. Nanoscale Res. Lett., 2015, 10: 165 (p. 1–15). https://doi.org/10.1186/s11671-015-0868-5.
68. Feng Y., Fang Z., Mao W., Gu A. Study on the structure and properties of cyanate ester/bentonite nanocomposites. J. Appl. Polym. Sci., 2005, 96: 632–637. https://doi.org/10.1002/app.21470.
69. Yu D.H., Wang B., Feng Y., Fang Z.P. Investigation of free volume, interfacial, and toughening behavior for cyanate ester/bentonite nanocomposite by positron annihilation. J. Appl. Polym. Sci., 2006, 102: 1509–1515. https://doi.org/10.1002/app.24428.
70. Polyhedral oligomeric silsesquioxane (POSS) polymer nanocomposites. From synthesis to applications / T. Sabu and S. Lakshmipriya (Ed.) – Elsevier, 2021: 576. ISBN 978-0-128-21347-6.
71. Applications of polyhedral oligomeric silsesquioxanes. C. Hartmann-Thompson (Ed.), Springer Science & Business Media (Vol.3), 2011: 420. ISBN 978-9-048-13786-2.
72. Moein A., Kebritchi A. New Insights into the structure, properties, and applications of polyhedral oligomeric silsesquioxane. Review. Silicon, 2023, 15: 5845–5875. https://doi.org/10.1007/s12633-023-02494-4.
73. Kuo S.W., Chang F.C. POSS related polymer nanocomposites. Prog. Polym. Sci., 2011, 36: 1649–1696. https://doi.org/10.1016/j.progpolymsci.2011.05.002.
74. Liang K., Li G., Toghiani H., Koo J.H., Pittman Jr.C.U. Cyanate ester/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: synthesis and characterization. Chem. Mater., 2006, 18: 301–312. https://doi.org/10.1021/cm051582s.
75. Lin Y., Jin J., Song M., Shaw S.J., Stone C.A. Curing dynamics and network formation of cyanate ester resin/polyhedral oligomeric silsesquioxane nanocomposites. Polymer, 2011, 52: 1716–1724. https://doi.org/10.1016/j.polymer.2011.02.041.
76. Tang C., Yan H., Li S., Bai L., Lv Q. Effects of novel polyhedral oligomeric silsesquioxane containing hydroxyl group and epoxy group on the dicyclopentadiene bisphenol dicyanate ester composites. Polymer Testing, 2017, 59: 316–327. https://doi.org/10.1016/j.polymertesting.2017.02.014.
77. Zhou Y., Zhang Z., Wang P., Ma X. High -performance and low-dielectric cyanate ester resin optimized by regulating the structure of linear polyhydroxy ether modifier. Compos. – A: Appl. Sci. Manuf., 2022, 162: 107136. https://doi.org/10.1016/j.compositesa.2022.107136.
78. Liang K., Toghiani H, Li G, Pittman Jr.C.U. Synthesis, morphology, and viscoelastic properties of cyanate ester/polyhedral oligomeric silsesquioxane nanocomposites. J. Polym. Sci. Part A Polym. Chem., 2005, 43: 3887–3898. https://doi.org/10.1002/pola.20861.
79. Chandramohan A., Dinkaran K., Kumar A.A., Alagar M. Synthesis and characterization of epoxy modified cyanate ester POSS nanocomposites. High Perform. Polym., 2012, 24: 405–417. https://doi.org/10.1177/0954008312441640
80. Zhang Z., Liang G., Wang X. Epoxy-functionalized polyhedral oligomeric silsesquioxane/cyanate ester resin organic-inorganic hybrids with enhanced mechanical and thermal properties. Polym Intern., 2014, 63: 552–559. https://doi.org/10.1002/pi.4557.
81. Starostenko O., Bershtein V., Fainleib A., Egorova L., Grigoryeva O., Sinani A., Yakushev P. Thermostable polycyanurate polyhedral oligomeric silsesquioxane hybrid networks: synthesis, dynamics and thermal behavior. Macromol. Symp., 2012, 316: 90–96. https://doi.org/10.1002/masy.201250612.
82. Pаt UA № 70478. MPK C08G 73/00 Method of producing polycyanurate. A.M. Fainleib, O.P. Grigoryeva, O.M. Starostenko, V.A. Bershtein, P.N. Yakushev, B. Youssef , J.-M. Saiter. Oprilyudneno 11.06.2012. Byul.no.11.
83. Baikova L., Pesina T., Sakseyev D., Fainleib A., Bershtein V. Hybrid cyanate ester resin-based nanocomposites: increased indentation size effect due to anomalous composition of micron subsurface layer. Polym. Test., 2016, 53: 15–18. https://doi.org/10.1016/j.polymertesting.2016.05.001.
84. Bershtein V.A., Fainleib A.M., Yakushev P.N., Kirilenko D.A., Melnychuk O.G. Super-heat-resistant polymer nanocomposites on the base of heterocyclic networks: structure and properties. Physics of the Solid State, 2019, 61, no. 8: 1494–1501. https://doi.org/10.1134/S1063783419080080.
85. Yakushev P.N., Bershtein V.A., Fainleib A.M., Kirilenko D.A., Melnychuk O.G. Ultra-heat resistant nanocomposites based on heterocyclic networks: structure, properties, origin of thermal stability. J. Physics. Conference Series, 2021, 2103: 012113. https://doi.org/10.1088/1742-6596/2103/1/012113.
86. Ariraman M., Sasikumar R., Alagar M. Cyanate ester tethered POSS/BACY nanocomposites for low k dielectrics. Polym. Adv. Technol., 2016, 27: 597–605. https://doi.org/10.1002/pat.3724.
87. Zhang S., Yan Y., Li X., Fan H., Ran Q., Fu Q., Gu Y. A novel ultra low-k nanocomposite of benzoxazinyl modified polyhedral oligomeric silsesquioxane and cyanate ester. Eur. Polym. J., 2018, 102: 124–132. https://doi.org/10.1016/j.eurpolymj.2018.03.013.
88. Zhang M., Yan H., Liu C., Zhang J. Preparation and characterization of POSS-SiO2/cyanate ester composites with high performance. Polym. Comp., 2015, 36: 1840–1848. https://doi.org/10.1002/pc.23091.
89. Fainleib А.М., Shantaliy Т.А., Pankratov V.А. Copolymers of cyanate esters and composite materials based on them. Compos. Polim. Mat., 1991, no. 49: 39–53. (in Russian).
90. Li W., Huang W., Kang Y., Gong Y., Ying Y., Yu J., Zheng J., Qiao L., Che S. Fabrication and investigations of G-POSS/cyanate ester resin composites reinforced by silane-treated silica fibers. Comp. Sci. Technol., 2019, 173: 7–14. https://doi.org/10.1016/j.compscitech.2019.01.022.
91. Bauer J., Bauer M. Curing of Cyanates with Primary Amines. Macromol. Chem. Phys. 2001, 202, no. 11: 2213–2220. https://doi.org/10.1002/1521-3935(20010701)202:11<2213::AID-MACP2213>3.0.CO;2-B.
92. Cho H., Liang K., Chatterjee S., Pittman Jr.C.U. Synthesis, morphology, and viscoelastic properties of polyhedral oligomeric silsesquioxane nanocomposites with epoxy and cyanate ester matrices. J. Inorg. Organomet. Polym. Mater., 2005, 15: 541–553. https://doi.org/10.1007/s10904-006-9008-0.
93. Shulzhenko D., Starostenko O., Grigoryeva O., Michely L., Fainleib A., Grande D. Curing kinetics of cyanate ester resin in the presence of different inorganic nanoparticles and thermal properties of the nanocomposites synthesized. 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP), Krakow, Poland, 2022, pp. 1-4, https://doi.org/10.1109/NAP55339.2022.9934391.
94. Tsiamis A., Iredale R., Backhouse R., Hallett S. R., Hamerton I. Liquid processable, thermally stable, hydrophobic phenolic triazine resins for advanced composite applications. ACS, 2019, 1, no. 6.: 1458–1465. https://doi.org/10.1021/acsapm.9b00212.
95. Sommer M. Tailor-made composite performance properties for high temperature applications, presented at AVK Tagung Essen, Germany, September 14, 2010.
96. Petrescu R. V., Aversa R., Akash B., Bucinell R., Corchado J., Apicella A., Petrescu F. I. T. Modern propulsions for aerospace-A review. J. Aircr. Spacecr. Technol., 2017, 1: 1–8. https://doi.org/10.3844/jastsp.2017.1.8.
97. Minocha A. Advanced manufacturing techniques in aerospace engineering. Darpan International Research Analysis, 2024, 12: 50–68. https://doi.org/10.36676/dira.v12.i3.56
98. Invisible aircraft: how does stealth technology work? [Electronic resource]. https://www.detective-store.com/blog_en/invisible-aircraft-how-does-stealth-technology-work/.
99. Liu R., Yan H., Zhang Y., Yang K., Du S. Cyanate ester resins containing Si-O-C hyperbranched polysiloxane with favorable curing processability and toughness for electronic packaging. J. Chem. Eng., 2022, 433: 133827. https://doi.org/10.1016/j.cej.2021.133827.