2024 (3) 3

https://doi.org/10.15407/polymerj.46.03.186

POLYMERIC ION-CONDUCTING MEMBRANES BASED ON

PEO-CONTAINING INTRAMOLECULAR POLYCOMPLEXES

Larisa KUNITSKAYA (ORCID: 0000-0001-7027-0231), Tatyana ZHELTONOZHSKAYA (ORCID: 0000-0001-5272-4244), Stanislav NESIN (ORCID: 0000-0003-2162-3533), Valery KLEPKO (ORCID: 0000-0001-8089-8305)
Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske Highway, Kyiv 02155, Ukraine,
Polym. J., 2024, 46, no. 3: 186-194.

Section: Structure and properties.

Language: Ukrainian.

Abstract:

In the present study, two series of solid solvent-free polymeric membranes based on diblock copolymers MePEO-b-PAAm (DBC) and triblock copolymers PAAm-b-PEO-b-PAAm (TBC), comprising chemically complementary poly(ethylene oxide) and poly(acryl amide) have been prepared by using casting technique. The dielectric properties of the prepared membranes in the frequency range of 102–105 Hz at room temperature as a function of water content and the length of the PEO block, as well as the peculiarities of water absorption processes under variable humidity, were investigated. It was found out that increasing the length of the PEO block led to an increase in the ionic conductivity of the obtained membranes. Such results confirmed the significant contribution of oxyethylene chains in ensuring the conductivity of lithium and solar cell batteries. The increase of relative humidity from 33% to 98% resulted in the increase of conductivity of DBC and TBC membranes up to 2.77·10-6–8.48·10-4 S·cm-1. According to the obtained results, block copolymers containing the interacting polymer components can be considered as potential solid polymer matrices for proton exchange membranes and they open the way for their application in fuel cells.

Key words: polyethylene glycol, polyacrylamide, intramolecular polycomplexes, polymer electrolytes.

REFERENCES

1. Satyabrata Si . Additives for Solid Polymer Electrolytes: The Layered Nanoparticles. Key Eng. Mat., 2013, 571: 27–56. https://doi.org/10.4028/www.scientific.net/KEM.571.27.
2. Ye Y-S., Rick J., Hwang B.-J. Water soluble polymers as proton exchange membranes for fuel cells. Polymers, 2012, 4: 913–963. https://doi.org/10.3390/polym4020913.
3. Quartarone E., Angioni S., Mustarelli P. Polymer and composite membranes for proton-conducting, high-temperature fuel cells: A Critical Review. Materials, 2017, 10: 687–704. https://doi.org/10.3390/ma10070687.
4. Baroutaji A., Carton J.G., Sajjia M., Olabi A-G. Materials in PEM fuel fells. Science and Materials Engineering, 2016: 1–11. https://doi.org/10.1016/B978-0-12-803581-8.04006-6.
5. Gupta S., Singh Pr. K., Bhattacharya B. Low-viscosity ionic liquid–doped solid polymer electrolytes: Electrical, dielectric, and ion transport studies. High Performance Polymers, 2018, 30, 8: 986–992. https://doi.org/10.1177/0954008318778763.
6. Silva M.., Barros S- C., Smith M. J., MacCallum J. R. Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate. Electrochim. Acta, 2004, 49: 1887–1891. https://doi.org/10.1016/j.electacta.2003.12.017.
7. Agrawal R .C.,.Pandey G.P. Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. J. Phys. D: Appl. Phys., 2008, 41: 223001. https://doi.org/10.1088/0022-3727/41/22/223001.
8. Jiang Yu, Ya X. , Ma Z., Mei P., Xiao W., You Q. and Zhang Y. Development of the PEO based solid polymer electrolytes for all-solid state lithium ion batteries polymers. 2018, 10(11): 1237–1240. https://doi.org/10.3390/polym10111237.
9. Trigg E.B, T. W. Gaines, M. Maréchal, D. E. Moed, P. Rannou, K. B. Wagener, Mark J. Stevens & K. I. Winey . Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport. Nature Materials. 2018, 17: 725–731. https://doi.org/10.1038/s41563-018-0097-2.
10. Florianczyk Z, Zygadlo-monikowska E., Ostrowska J., Frydrych A. Solid polymer electrolytes based on ethylene oxide polymers. Polymery, 2014, 59, 1: 80–87. https://doi.org/10.14314/polimery.2014.080.
11. Elmér A. M., Jannasch P. Solid electrolyte membranes from semi-interpenetrating polymer networks of PEG-grafted polymethacrylates and poly(methyl methacrylate). Solid State Ionics, 2006, 177(5-6): 573-579. https://doi.org/10.1016/j.ssi.2005.12.021.
12. Ping J., Pan H., Hou P.-P., Zhang M.-Y., Wang X., Wang C., Chen J., D.Wub, Shen Z., X.-H. Fan. Solid Polymer Electrolytes with Excellent High-Temperature Properties Based on Brush Block Copolymers Having Rigid Side Chains. ACS Applied Materials & Interfaces. 2017, 9, 7: 6130–6137. https://doi.org/10.1021/acsami.6b15893.
13. Tsuchida E., Ohno H., Tsunemi K., Kobayashi N. Lithium ionic conduction in poly (methacrylic acid)-poly (ethylene oxide) complex containing lithium perchlorate. Solid State Ionics, 1983, 11: 227–233. https://doi.org/10.1016/0167-2738(83)90028-0.
14. Zheltonozhskaya T., Permyakova N., Momot L. Intramolecular polycomplexes in block and graft copolymers, Chapter 5. In book: Hydrogen-bonded interpolymer complexes: formation, structure and applications. Eds.V. Khutorianskiy, G.Staikos. World Scientific, Singapore, 2009. https://doi.org/10.1142/9789812709776_0005.
15. Galperin D., Khalatur P.G., Khokhlov A.R Morphology of Nafion Membranes: Microscopic and Mesoscopic. Modeling Topics in Applied Physics, 2009, 113: 453–483. https://doi.org/10.1007/978-0-387-78691-9_15.
16. Zheltonozhskaya T. B., Zagdanskaya N. E., Demchenko O. V., Momot L. N., Permyakova N. M., Syromiatnikov V. G., Kunitskaya L. R.. Graft copolymers with chemically complementary components as a special class of high-molecular-weight compounds. Rus.Chem.Rev. 2004, 73: 811–829. https://doi.org/10.1070/RC2004v073n08ABEH000901.
17. Zheltonozhska T.B., Permyakova N.M., Kunytska L.R., Klymchuk D.O. Synthesis of micellar nanocontainers and nanoreactors based on block and grafted copolymers and polymer-inorganic hybrids. Chapter 1.3 in book: Multifunctional nanomaterials for biology and medicine: molecular design, synthesis and application Editor Stoika R.S., Nauk. Dumka, Kyiv 2017: 368. ISBN 978-966-00-1564-7.
18. Kunitskaya L, Zheltonozhskaya T., Berkova S. Block-copolymers of polyacrylamide with poly(ethylene oxide) forming intramolecular polycomplexes. Mol.Cryst.Liq. Cryst., 2008, 497: 282–291. https://doi.org10.1080/15421400802463209.
19. Zheltonozhskaya T., Nedashkovskaya V., Khutoryanskiy V., Gomza Yu., Fedorchuk S., Klepko V., Partsevskaya S. Behavior of acid hydrolysis in block copolymers comprising polyacrylamide and poly(ethylene oxide). Mol. Cryst. Liq. Cryst., 2011, 536: 380–391. https://doi.org/10.17721/1728-2209.2018.1(55).15.
20. Permyakova N.M., Zheltonozhskaya T.B., Shilov V.V., Zagdanskaya N.E., Kunitskaya L.R., Syromyatnikov V.G., Kostenko L.S. Structure of triblock-copolymers based on poly(ethylene oxide) and poly(acrylamide) with central blocks of varying lengths. Theor. and Exper. Chem., 2005, 41: 382–388. https://doi.org/10.1007/s11237-006-0007-6.
21. Zheltonozhskaya T.B., Fedorchuk S.V., Gomza Yu.P., Permyakova N.M., Syromyatnikov V.G. Influence of intramolecular complexation on the structure of block copolymers including polyacrylamide and polyethylene oxide. Voprosy Khimii i Khimicheskoi Tekhnologii, 2007, 8: 78–87.
22. Xie H.-Q., Xie D. Molecular design, synthesis and properties of block and graftcopolymers containing polyoxyethylene segments. Prog. Polym. Sci., 1999, 24: 275-313. https://doi.org/10.1016/S0079-6700(98)00020-3.
23. Kang M.-S., Kim J.H., Kim Y.J., Wan J., Park N.-G., Kang Y.S. Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silicananoparticles. Chem. Commun., 2005: 889–891. https://doi.org/10.1039/B405215C.
24. Zheltonozhskaya T., Shembel E, Fedorchuk S., Kunitskaya L., Maksyta I., Permyakova N.,.Gomza Yu. Nanostructured Triblock Copolymers with Chemically Complementary Components and Their Ionic Conductivity. Journal of Research Updates in Polymer Science, 2012, 1, 2: 1–12. https://doi.org/10.6000/1929-5995.2012.01.02.4.