2024 (3) 6
https://doi.org/10.15407/polymerj.46.03.209
EFFECT OF N-PHENYLAMINOPROPYL POLYHEADRAL
OLIGOMERIC SILSESQUIOXANE DISPERSION METHOD ON STRUCTURE-PROPERTY RELATIONSHIPS FOR THERMOSTABLE POLYCYANURATE-BASED NANOCOMPOSITES
Оlga Grigoryeva1* (ORCID: 0000-0003-1781-7124), Diana Shulzhenko1 (ORCID: 0000-0002-5406-5235), Kristina Gusakova1 (ORCID: 0000-0002-0827-7042), Olga Starostenko1 (ORCID: 0000-0002-0827-7042), Andrii Pylypenko1,2** (ORCID: 0000-0003-0538-1386), Alexander Fainleib1 (ORCID: 0000-0001-8658-4219), Daniel GRANDE3*** (ORCID: 0000-0002-9987-9961)
1Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske Highway, Kyiv, 02155, Ukraine,
2Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine,
3Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23, rue du Loess, 67034 Strasbourg, France
*e-mail: grigoryevaolga@i.ua
**e-mail: pik70@ukr.net
***e-mail: daniel.grande@ics-cnrs.unistra.fr
Polym. J., 2024, 46, no. 3: 209-225.
Section: Structure and properties.
Language: Ukrainian.
Abstract:
In this work, the effect of the method of dispersion of a reactive N-phenylaminopropyl polyhedral oligomeric silsesquioxane (NPAP-POSS, 0.025 wt.%) with eight secondary amino groups, in dicyanate ester of bisphenol E (DCBE) on the chemical processes occurring in reactive DCBE/NPAP-POSS blends during dispersion, as well as on the chemical structure, viscoelastic, thermophysical, and thermal properties of heat-resistant organic-inorganic PCN/NPAP-POSS nanocomposites was investigated. The synthesis of the nanocomposite samples was carried out in two stages. In the first stage, to improve the efficiency of nanofiller dispersion, high-speed mechanical or ultrasonic mixing of NPAP-POSS with DCBE was used at different temperatures (T = 65 °C, T = 165 °C), which ensured the chemical interaction of the components. In the second stage, PCN/NPAP-POSS nanocomposites were synthesized by in situ high-temperature reactive molding by dynamic heating the samples in the temperature range of T = 20–300 °C. Using dynamic mechanical thermal analysis (DMTA) for PCN/NPAP-POSS nanocomposites synthesized by high-speed mechanical or ultrasonic mixing at a temperature of T = 65 °C, an unusually significant increase (by 26.5–28.5 °C compared to PCN) in the glass transition temperature (Tg) of the samples even at ultra-low NPAP-POSS content. This phenomenon demonstrates the so-called nanoscale effect. It was also found that the method of nanofiller dispersion affects the increase (compared to unfilled PCN) of the storage modulus (E’) and other viscoelastic properties, as well as the apparent network density (v) and the apparent average molecular weight (Mc) between crosslinks in the hybrid network matrix of the nanocomposites. Differential scanning calorimetry (DSC) also showed that the dispersion method changes the thermophysical properties of the synthesized PCN/NPAP-POSS nanocomposites. This effect is associated with the formation of additional organic-inorganic crosslinks due to the chemical embedding of NPAP-POSS nanoparticles and the formation of the hybrid PCN/NPAP-POSS network. Fourier transform infrared (FTIR), 1H NMR, and 13C NMR spectroscopy confirmed that during nanofiller dispersion in DCBE/NPAP-POSS reactive blends, a chemical interaction occurs between the –O–C≡N groups of DCBE and the secondary –NH groups of NPAP-POSS. This interaction is confirmed by the appearance of corresponding absorption bands and signals (chemical shifts) in the spectra indicating the formation of intermediate isourea fragments and triazine rings of polycyanurates. It was concluded that ultrasonic dispersion of the nanofiller is the most effective under these synthesis conditions for PCN/NPAP-POSS nanocomposites as it ensures the highest degree of cyanate group conversion in DCBE at the final stages of synthesis (confirmed by DMTA data), thereby extending the range of working temperatures within which the samples retain their mechanical and physical properties. Using thermogravimetric analysis (TGA), it was found that all nanocomposites exhibit high resistance to thermo-oxidative degradation (Td > 440 °C), which is largely unaffected by the method of nanofiller dispersion and is determined by the chemical structure of the densely cross-linked PCN/NPAP-POSS hybrid network.
Key words: organic-inorganic nanocomposites, hybrid polycyanurate network, polyhedral oligomeric silsesquioxane, chemical incorporation, viscoelastic properties, thermal stability.
REFERENCES
1. Anandhan S., Bandyopadhyay S. Polymer nanocomposites: from synthesis to applications, Chapter 1. In book: Nanocomposites and polymers with analytical methods/ Ed.: Cuppoletti. InTech: Rijeka, Croatia, 2011. ISBN 978-953-307-352-1.
2. Darwish M.S.A., Mostafa M.H., Al-Harbi L.M. Polymeric Nanocomposites for Environmental and Industrial Applications. Int. J. Mol. Sci, 2022, 23(3):1023–1055. https://doi.org/10.3390/ijms23031023.
3. Wu J., Mather P.T. POSS polymers: physical properties and biomaterials applications. Polym. Rev., 2009, 49: 25–63. https://doi.org/10.1080/15583720802656237.
4. Camargo P.H.C., Satyanarayana K.G., Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res., 2009, 12: 1–39. https://doi.org/10.1590/S1516-14392009000100002.
5. Kuo S.W., Chang F.C. POSS related polymer nanocomposites. Prog. Polym. Sci., 2011, 36: 1649−1696. https://doi.org/10.1016/j.progpolymsci.2011.05.002.
6. Ayandele E., Sarkar B., Alexandridis P. Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials, 2012, 2: 445−475. https://doi.org/10.3390/nano2040445.
7. Kausar A. State-of-the-Art Overview on Polymer/POSS Nanocomposite, Polymer-Plastics Technology and Engineering, 2017, 56, 13: 1401–1420. https://doi.org/10.1080/03602559.2016.1276592.
8. Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites. From Synthesis to Applications / Eds.: S.Thomas, L. Somasekharan. Elsevier Inc., 2021. ISBN 978-0-12-821347-6.
9. Pittman C., Li G.-Z., Ni H. Hybrid inorganic/organic crosslinked resins containing polyhedral oligomeric silsesquioxanes. Macromol. Symp., 2003, 196: 301–325. https://doi.org/10.1002/masy.200390170.
10. Cho H.-S., Liang K., Chatterjee S., Pittman C.U.Jr. Synthesis, morphology, and viscoelastic properties of polyhedral oligomeric silsesquioxane nanocomposites with epoxy and cyanate ester matrices. J. Inorg. Organomet. Polym., 2005, 15: 541–553. https://doi.org/10.1007/s10904-006-9008-0.
11. Lu T., Liang G., Guo Z. Preparation and characterization of organic–inorganic hybrid composites based on multiepoxy silsesquioxane and cyanate resin. J. Appl. Polym. Sci., 2006, 101: 3652–3658. https://doi.org/10.1002/app.22743.
12. Kourkoutsaki Th., Logakis E., Kroutilova I., Matejka L., Nedbal J., Pissis P. Polymer dynamics in rubbery epoxy networks/polyhedral oligomeric silsesquioxanes nanocomposites. J. Appl. Polym. Sci., 2009, 113, 4.: 2569–2582. https://doi.org/10.1002/app.30225.
13. Mishra K., Singh R.P. Quantitative Evaluation of the effect of dispersion techniques on the mechanical properties of polyhedral oligomeric silsesquioxane (POSS)–epoxy nanocomposites. Polym. Compos., 2018, 39: E2445–E2453. https://doi.org/10.1002/pc.24744.
14. Mishra K., Babu L. K., Dhakal D., Lamichhane P., Vaidyanathan R. K. The effect of solvent on the mechanical properties of polyhedral oligomeric silsesquioxane (POSS)–epoxy nanocomposites. SN Applied Sciences, 2019, 1:898. https://doi.org/10.1007/s42452-019-0918-1.
15. Liang K., Toghiani H., Li G., Pittman C.U. Jr. Synthesis, morphology, and viscoelastic properties of cyanate ester/polyhedral oligomeric silsesquioxane nanocomposites. J. Polym. Sci. Part A: Polym. Chem., 2005, 43: 3887–3898. https://doi.org/10.1002/pola.20861.
16. Liang K., Li G., Toghiani H., Koo J. H., Pittman C. U. Cyanate ester/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: synthesis and characterization. Chem. Mater., 2006, 18: 301–312. https://doi.org/10.1021/cm051582s .
17. Lin Y., Jin J., Song M., Shaw S.J., Stone C.A. Curing dynamics and network formation of cyanate ester resin/polyhedral oligomeric silsesquioxanes nanocomposites. Polymer, 2011, 52: 1716–1724. https://doi.org/10.1016/j.polymer.2011.02.041.
18. Starostenko O., Bershtein V., Fainleib A., Egorova L., Grigoryeva O., Sinani A., Yakushev P. Thermostable polycyanurate-polyhedral oligomeric silsesquioxane hybrid networks: synthesis, dynamics and thermal behavior. Macromol. Symp., 2012, 316: 90–96. https://doi.org/10.1002/masy.201250612.
19. Zhang Z., Liang G., Wang X., Adhikari S., Pei, J. Curing behavior and dielectric properties of amino-functionalized polyhedral oligomeric silsesquioxane/cyanate ester resin hybrids. High Perform. Polym., 2013, 25: 427−435. https://doi.org/10.1177/0954008312469234.
20. Zhang Z., Liang G., Wang X. Epoxy-functionalized polyhedral oligomeric silsesquioxane/cyanate ester resin organic–inorganic hybrids with enhanced mechanical and thermal properties. Polym. Int., 2014, 63, 3: 552–559. https://doi.org/10.1002/pi.4557.
21. Grigoryeva О.P., Starostenko О.N., Gusakova К.G., Fainleib А.М., Saiter J.M., Youssef B., Grande D. The effect of epoxy-functionalized POSS on chemical structure and viscoelastic properties of nanocomposites based on polycyanurate networks. Polimernyi Zhurnal, 2014, 36, 4: 341–351. (in Ukrainian). https://doi.org/10.1002/masy.201300174.
22. Bershtein V. , Fainleib А., Egorova L., Grigoryeva O., Kirilenko D., Konnikov S., Ryzhov V., Starostenko O., Yakushev P., Yagovkina M., Saiter J.-M. The impact of ultra-low amounts of introduced reactive POSS nanoparticles on structure, dynamics and properties of densely cross-linked cyanate ester resins. Eur. Polym. J., 2015, 67: 128–142. https://doi.org/10.1016/j.eurpolymj.2015.03.022.
23. Ariraman M., Sasikumar R., Alagar M. Cyanate ester tethered POSS/BACY nanocomposites for low-k dielectrics. Polym. Adv. Tech., 2016, 27(5): 597–605. https://doi.org/10.1002/pat.3724.
24. Bershtein V., Fainleib A., Yakushev P., Egorova L., Grigoryeva O., Ryzhov V., Starostenko O. Thermostable cyanate ester resins and POSS-containing nanocomposites: influence of matrix chemical structure on their properties. Polym. Adv. Tech., 2016, 27: 339–349. https://doi.org/10.1002/pat.3645.
25. Tang C., Yan H., Li S., Bai L., Lv Q. Effects of novel polyhedral oligomeric silsesquioxane containing hydroxyl group and epoxy group on the dicyclopentadiene bisphenol dicyanate ester composites. Polym. Test., 2017, 59: 316–327. https://doi.org/10.1016/j.polymertesting.2017.02.014.
26. Zhang S., Yan Y., Li X., Fan H., Ran Q., Fu Q., Gu Y. A novel ultra low-k nanocomposites of benzoxazinyl modified polyhedral oligomeric silsesquioxane and cyanate ester. European Polymer Journal, 2018, 103: 124–132. https://doi.org/10.1016/j.eurpolymj.2018.03.013 .
27. Thermostable polycyanurates: synthesis, modification, structure and properties / Ed. A Fainleib. New York : Nova Science Publishers, 2011: 362. ISBN 1608769070.
28. Bershtein V., Fainleib A., Yakushev P., Kirilenko D., Egorova L., Grigoryeva O., Ryzhov V., Starostenko O. High performance multifunctional cyanate ester oligomer-based network and epoxy-POSS containing nanocomposites: structure, dynamics, and properties. Polym. Compos., 2020, 41: 1900−1912. https://doi.org/10.1002/pc.25506.
29. Grigoryeva O., Fainleib A., Starostenko O., Shulzhenko D., Rios de Anda A., Gouanvé F., Espuche E., Grande D. Effect of amino-functionalized polyhedral oligomeric silsesquioxanes on structure-property relationships of thermostable hybrid cyanate ester resin based nanocomposites. Polymers, 2023, 15: 4654. https://doi.org/10.3390/polym15244654.
30. Grigoryeva О.P., Shulzhenko D.M., Gusakova К.G., Starostenko О.M., Fainleib А.М., Grande D. Catalytic effect of N-phenylaminopropyl polyhedral oligomeric silsesquioxane in the synthesis of hybrid nanocomposites based on polycyanurate. Polimernyi Zhurnal, 2024, 36, 1: 341–351. (in Ukrainian). https://doi.org/10.15407/polymerj.46.01.003.
31. Goyal S., Cochran E.W. Cyanate ester composites to improve thermal performance: a review. Polym Int., 2022; 71: 583–589588. https://doi.org/10.1002/pi.6373.
32. Flory P. J. Principles of Polymer Chemistry, Cornell University Press, 1953, 672 p. ISBN-13: 978-0801401343.
33. Tobolsky A. V. Properties and Structure of Polymers, Wiley, New York, 1960. ISBN-10. 1124049770. https://doi.org/10.1149/1.2427514.
34. ISO 1183-1:2022. Plastics — Methods for determining the density of non-cellular plastics —Part 1: Immersion method, liquid pycnometer method and titration method.
35. Bauer J., Bauer M. Curing of cyanates with primary amines. Macromol. Chem. Phys., 2001, 202: 2213−2220. https://doi.org/10.1002/1521-3935(20010701)202:11<2213::AID-MACP2213>3.0.CO;2-B.
36. Kumar Vikash V. Ultrasonic-assisted de-agglomeration and power draw characterization of silica nanoparticles. Ultrasonics Sonochemistry, 2020, 65: 105061. https://doi.org/10.1016/j.ultsonch.2020.105061.
37. Landel R. F., Nielsen L. E. Mechanical Properties of Polymers and Composites, 2nd Ed., CRC Press, USA, 1993. ISBN 9780824789640. https://doi.org/10.1201/b16929.
38. Youssef G. Applied Mechanics of Polymers: Properties, Processing, and Behavior, San Diego, Elsevier, 2022. ISBN 9780128210789.
39. Zhang S., Xin Yu., Sun Y., Xi Z., Wei G., Han M., Liang B., Ou P., Xu K.,, Qiu J., Huang Z.. Particle size effect on surface/interfacial tension and Tolman length of nanomaterials: A simple experimental method combining with theoretical, J. Chem. Phys. 2024, 160: 194708. https://doi.org/10.1063/5.0204848.