№3 (2017) 1
https://doi.org/10.15407/polymerj.39.03.147
The ion-conducting composites based on the aliphatic and aromatic epoxy oligomers and the lithium perchlorate salt
L.K. Matkovska1,2, M.V. Iurzhenko2, Ye.P. Mamunya2, O.K. Matkovska2, G. Boiteux1, E.V. Lebedev 2
1 Universite de Lyon, Universite Lyon 1, Ingenierie des Materiaux Polymeres
UMR CNRS 5223, 15 Boulevard A. Latarjet, Villeurbanne Cedex, 69 622 France
2 Institute of Macromolecular Chemistry NAS of Ukraine
48, Kharkivs’ke shose, Kyiv, 02160, Ukraine
Polym. J., 2017, 39, № 3: 147-153.
Section: Structure and properties.
Language: English.
Abstract:
The purpose of this study was investigation of the polymer composites based on the aliphatic epoxy oligomer – diglycidyl ether of polyethylene glycol DEG-1, aromatic diane-epoxy resin DER-331 and different content of the perchlorate lithium salt. Structure and properties of composites were characterized by means of the wide angle X-ray scattering (WAXS), the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC) and the broadband dielectric spectroscopy (BDS). The results show that the synthesized composites based on the aliphatic and aromatic oligomers in the presence of lithium perchlorate salt are amorphous with the ionic conductivity ~ 4·10-4 S/cm at 200 °C. An increase of the glass transition temperature of the synthesized composites has been observed with increasing of the salt concentration that indicates the influence of lithium perchlorate on the molecular structure of composites.
Keywords: aliphatic and aromatic oligomers, lithium perchlorate salt, structure, ion-conductivity.
References
- 1. Jin F.-L., Li X., Park S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem., 2015, 29: 1–11.
https://doi.org/10.1016/j.jiec.2015.03.0262. Hung D. P., Hiep N. A., Phuc Study M. V. on uv-crosslinking process of diane-epoxy resin/poly(tetrahydrofurane) divinyl ether system. J. Sci. Technol., 2016, 54(2): 249–257.
3. Silva A. A., Livi S., Netto D. B., Soares B. G., Duchet J., Gйrard J.-F. New epoxy systems based on ionic liquid. Polym., 2013, 54: 2123–2129.
https://doi.org/10.1016/j.polymer.2013.02.0214. Kumar S., Samal S.K., Mohanty S., Nayak S.K. Study of curing kinetics of anhydride cured petroleum-based (DGEBA) epoxy resin and renewable resource based epoxidized soybean oil (ESO) systems catalyzed by 2-methylimidazole. Thermochim. Acta, 2017, 654: 112–120.
https://doi.org/10.1016/j.tca.2017.05.0165. Rocco A. M., Fonseca C. P., Loureiro F. A. M., Pereira R. P. A polymeric solid electrolyte based on a poly(ethylene oxide)/ poly(bisphenol A-co-epichlorohydrin) blend with LiClO4. Solid State Ionics, 2004, 166: 115–126.
https://doi.org/10.1016/j.ssi.2003.10.0156. Markus A. Downey, Lawrence T. Drzal Toughening of aromatic epoxy via aliphatic epoxy copolymers. Polym., 2014, 55(26): 6658–6663.
https://doi.org/10.1016/j.polymer.2014.10.0527. Johnston K., Pavuluri S.K., Leonard M.T., Desmulliez M.P.Y., Arrighi V. Microwave and thermal curing of an epoxy resin for microelectronic applications Thermochim. Acta, 2015, 616: 100–109.
https://doi.org/10.1016/j.tca.2015.08.0108. Boumedienne N., Faska Y., Maaroufi A., Pinto G., Vicente L., Benavente R. Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites. J. Phys. Chem. Solids, 2017, 104: 185–191.
https://doi.org/10.1016/j.jpcs.2017.01.0189. Fache M., Monturumal C., Boutevin B., Caillol S. Amine hardeners and epoxy cross-linker from aromatic renewable resources. Eur. Polym. J., 2015, 73: 344–362.
https://doi.org/10.1016/j.eurpolymj.2015.10.03210. Chen B., Xu Q., Huang Zh., Zhao Ya., Chen Sh., Xu X. One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. J. Power Sources, 2016, 331: 322–331.
https://doi.org/10.1016/j.jpowsour.2016.09.06311. Aurbach D., Zinigrad E., Cohen Ya., Teller H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics, 2002, 148: 405–416.
https://doi.org/10.1016/S0167-2738(02)00080-212. Poornima Vijayan P., Debora Puglia, Mariam Ali S.A. Al-Maadeed, Jose. M. Kenny, Sabu Thomas Elastomer/thermoplastic modified epoxy nanocomposites: The hybrid effect of ‘micro’ and ‘nano’ scale. Mater. Sci. Eng., R, 2017, 116: 1–29.
13. Romo-Uribe A., Santiago-Santiago K., Reyes-Mayer A., Aguilar-Franco M. Functional PDMS enhanced strain at fracture and toughness of DGEBA epoxy resin. Eur. Polym. J., 2017, 89: 101–118.
https://doi.org/10.1016/j.eurpolymj.2017.01.04114. Feng Q., Yang J., Yu Ya., Tian F., Zhang B., Feng M., Wang Sh. The ionic conductivity, mechanical performance and morphology of twophase structural electrolytes based on polyethylene glycol, epoxy resin and nano-silica. Mater. Sci. Eng., B, 2017, 219: 37–44.
https://doi.org/10.1016/j.mseb.2017.03.00115. Kim J. G., Son B., Mukherjee S., Schuppert N., Bates A., Kwon O., Choi M. J., Chung H. Y., Park S. A review of lithium and non-lithium based solid state batteries. J. Power Sources, 2015, 282: 299–322.
https://doi.org/10.1016/j.jpowsour.2015.02.05416. Amereller M., Schedlbauer T., Moosbauer D., Schreiner C., Stock C., Wudy F., Zugmann S., Hammer H., Maurer A., Gschwind R.M., Wiemhцfer H.-D., Winter M., Gores H.J. Electrolytes for lithium and lithium ion batteries: From synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Prog. Solid State Chem., 2014, 42: 39–56.
https://doi.org/10.1016/j.progsolidstchem.2014.04.00117. Yu Ya., Zhang B., Wang Y., Qi G., Tian F., Yang J., Wang Sh. Co-continuous structural electrolytes based on ionic liquid, epoxy resin and organoclay: Effects of organoclay content. Mater. Des., 2016, 104: 126–133.
https://doi.org/10.1016/j.matdes.2016.05.00418. Wu F., Chen N., Chen R., Wang L., Li L. Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries. Nano Energy, 2017, 31: 9–18.
https://doi.org/10.1016/j.nanoen.2016.10.06019. Jinisha B, Anilkumar KM, Manoj M, Pradeep V.S, Jayalekshmi S Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer. Electrochim. Acta, 2017, 235: 210–222.
https://doi.org/10.1016/j.electacta.2017.03.11820. Lv P., Yang J., Liu G., Liu H., Li S., Tang Ch., Mei J., Li Yu., Hui D. Flexible solid electrolyte based on UV cured polyurethane acrylate/succinonitrile-lithium salt composite compatibilized by tetrahydrofuran. Composites Part B, 2017, 120: 35–41.
https://doi.org/10.1016/j.compositesb.2017.03.06021. He W., Cui Z., Liu X., Cui Ya., Chai J., Zhou X., Liu Zh., Cui G. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochim. Acta, 2017, 225: 151–159.
https://doi.org/10.1016/j.electacta.2016.12.11322. Thayumanasundaram S., Rangasamy V. Sh., Seo J. W., Locquet J.-P. Electrochemical performance of polymer electrolytes based on Poly(vinyl alcohol)/Poly(acrylic acid) blend and Pyrrolidinium ionic liquid for lithium rechargeable batteries. Electrochim. Acta, 2017, 240: 371–378.
https://doi.org/10.1016/j.electacta.2017.04.10723. Polu A. R., Rhee H.-W. Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int. J. Hydrogen Energy, 2017, 42(10): 7212–7219.
https://doi.org/10.1016/j.ijhydene.2016.04.16024. Lasinska A.K., Marzantowicz M., Dygas J.R., Krok F., Florjanczyk Z., Tomaszewska A., Zygadio-Monikowska E., Zukowska Z., Lafont U. Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium salts. Electrochim. Acta, 2015, 169: 61–72.
https://doi.org/10.1016/j.electacta.2015.04.02325. Mindemark J., Sun B., Torma E., Brandell D. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J. Power Sources, 2015, 298: 166–170.
https://doi.org/10.1016/j.jpowsour.2015.08.03526. Daigle J.-Ch., Asakawa Yu., Vijh A., Hovington P., Armand M., Zaghib K. Exceptionally stable polymer electrolyte for a lithium battery based on cross-linking by a residue-free process. J. Power Sources, 2016, 332: 213–221.
https://doi.org/10.1016/j.jpowsour.2016.09.13927. Matkovska L., Iurzhenko M., Mamunya Ye., Matkovska O., Demchenko V., Lebedev E., Boiteux G., Serghei A. Electrophysical behavior of ion-conductive organic-inorganic polymer system based on aliphatic epoxy resin and salt of lithium perchlorate. Nanoscale Res. Lett. 2014, 9: 674.
https://doi.org/10.1186/1556-276X-9-67428. Kumar A., Sharma R., Das M. K., Gajbhiye P., Kar K. K. Impacts of ceramic filler and the crystallite size of polymer matrix on the ionic transport properties of lithium triflate/poly (vinylidene fluoride-co-hexafluoropropene) based polymer electrolytes. Electrochim. Acta, 2016, 215: 1–11.
https://doi.org/10.1016/j.electacta.2016.08.087