№3 (2017) 2
https://doi.org/10.15407/polymerj.39.03.154
Structure, electrical, thermophysical and mechanical properties of metal-filled composites formed in a magnetic field
A.I. Misiura1, Ye. P. Mamunya2, V. L. Demchenko2, N. P., Kulish1, G. P. Syrovets2
1 Taras Shevchenko National University of Kyiv
4, Hlushkovа prospekt, Kyiv, 03022, Ukraine
2 Institute of macromolecular chemistry of NAS of Ukraine
48, Kharkivs’ke shose, Kyiv, 02160, Ukraine
Polym. J., 2017, 39, № 3: 154-162.
Section: Structure and properties.
Language: Ukrainian.
Abstract:
Polymer composites based on polypropylene (PP) and copolyamide (CPA) filled with dispersed iron (Fe) were modified in magnetic field in a state of melt. As a result, the filler formed a one-dimensional conductive structure. Morphology of the initial and modified composites, their conductivity, thermophysical and mechanical characteristics have been studied using thermomechanical analysis (TMA) and differential scanning calorimetry (DSC). Modification of composites in magnetic field changes the character of fillers distribution in the polymer matrix, that, in turn affects on conductivity and modulus of elasticity of composites. Hence, the percolation threshold for the initial PP-Fe and CPA-Fe composites is 19,7 and 29,5 % vol., for the modified composites it is 3,3 % vol. and 5,0 % vol. respectively. For the samples with high concentration of filler, the modulus of elasticity for modified composites is higher than for the initial systems. The addition of a metal filler to composites results in an increase the crystallinity of it’s polymer matrix.
Key words: polymer composites, modification in magnetic field, conductivity, thermophysical characteristics, modulus of elasticity.
References
-
1. Amancio-Filho S.T., Santos J.F. Joining of polymers and polymer-metal hybrid structures: resent developments and trends. Polym. Eng. Sci., 2009, 49: 1461–1476.
https://doi.org/10.1002/pen.214242. Hanemann T., Vinga D. Polymer-nanoparticle composites: from synthesis to modern applications. Materials, 2010, 3: 3468–3517.
https://doi.org/10.3390/ma30634683. Pugal D., Jung K., Alvo Aabloo, Kim K. Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives. Polym. Int., 2010, 59: 279–289.
https://doi.org/10.1002/pi.27594. Bhattacharya S.K. Metal-filled polymers: properties and applications. New York: Marcel Dekker Inc., 1986: 361, ISBN 0-8247-7555-4. 5. Seanor D.A., Electrical Properties of Polymers. New York: Academic Press, 1982: 379. 6. Mamunya Ye.P., Iurzhenko M.V., Lebedev E.V. Levchenko V.V., Chervakov O.V., Matkovska O.K., Sverdlikovska O.S. Electroactive polymer materials, Kyiv: Alpha-reklama, 2013: 398.
7. Mamunya Ye.P., Davydenko V.V., Pissis P., Lebedev E.V. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J., 2002, 38: 1887–1897.
https://doi.org/10.1016/S0014-3057(02)00064-28. Maaroufi A., Haboubi K., Amarti A., Carmona F. Electrical resistivity of polymeric matrix loaded with nickel and cobalt powders J. Mater. Sci., 2004, 39: 265–270.
https://doi.org/10.1023/B:JMSC.0000007752.08385.e09. Frederick R., Yu King R., Kuriakose M. et al. Electrical and thermal transport properties of polyaniline/silver composites and their use as thermoelectric materials. Synth. Met., 2015,199: 196–204.
https://doi.org/10.1016/j.synthmet.2014.11.02010. Krupa I., Cecen V., Boudenne A., Prokes J., Novak I. The mechanical and adhesive properties of electrically and thermally conductive polymeric composites based on high density polyethylene filled with nickel powder. Mater. Des., 2013, 51: 620–628.
https://doi.org/10.1016/j.matdes.2013.03.06711. Mamunya Y.P., Muzychenko Y.V., Lebedev E.V. et al. PTC effect and structure of polymer composites based on polyethylene/polyoxymethylene blend filled with dispersed iron. Polym. Eng. Sci., 2007, 47 (1): 34–42.
https://doi.org/10.1002/pen.2065812. Genetti W. B., Yuan W.L., Grady B.P. et al. Polymer matrix composites: Conductivity enhancement through polypyrrole coating of nickel flake J. Mater. Sci., 1998, 33: 3085–3093.
https://doi.org/10.1023/A:100438762116513. Nurazreena, Hussain L., Ismail H., Mariatti M. Metal filled high density polyethylene composites – electrical and tensile properties. J. Thermop. Compos. Mater., 2006, 19: 413–425.
https://doi.org/10.1177/089270570606219714. Selvin T., Kuruvillab J., Sabu T. Mechanical properties of titanium dioxide-filled polystyrene microcomposites. Mater. Lett., 2004, 58: 281–289.
https://doi.org/10.1016/S0167-577X(03)00470-115. Goc K., Gaska K., Klimczyk K. et al. Influence of magnetic field-aided filler orientation on structure and transport properties of ferrite filled composites. J. Magnetism and Magnetic Mater., 2016, 1: 345–353.
https://doi.org/10.1016/j.jmmm.2016.06.04616. Leng J. S., Huang W. M., Lan X. et al. Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. App. Phys. Lett., 2008, 92: 204101-1–204101-3.
https://doi.org/10.1063/1.293104917. Mamunya Ye.P. Levchenko V.V., Lebedev E.V. Thermal conductivity and electrical conductivity of polymer-metal composites with 1D structure of the filler, that was formed in magnetic field. Polymer J. (Ukr.), 2016, 38(1): 3-17 (in Ukrainian).
https://doi.org/10.15407/polymerj.38.01.00318. Zhang B., Xie Ch., Hu J., et al. Novel 1–3 metal nanoparticle/polymer composites induced by hybrid external fields. Compos. Sci. Tech., 2006, 66: 1558–1563.
https://doi.org/10.1016/j.compscitech.2005.11.02019. Boudenne A., Mamunya Ye. P., Levchenko V.V. et al. Improvement of thermal and electrical properties of Silicone-Ni composites using magnetic field. Eur. Polym. J., 2015, 63: 11–19.
https://doi.org/10.1016/j.eurpolymj.2014.11.03220. Bellan C., Bossis G. Field dependence of viscoelastic properties of MR elastomers. Int. J. Mod. Phys. B, 2002, 16: 2447–2453.
https://doi.org/10.1142/S021797920201249921. Varga Z., Filipcsei G., Zrinyi M. Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer, 2006, 47: 227–233.
https://doi.org/10.1016/j.polymer.2005.10.13922. Stepanov G.V., Abramchuk S.S., Grishin D.A. et al. Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers. Polymer, 2007, 48: 488–495.
https://doi.org/10.1016/j.polymer.2006.11.04423. Agari Y., Uno T. Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci., 1986, 32: 5705–5712.
https://doi.org/10.1002/app.1986.07032070224. Boudenne А., Ibos L., Fois M. et al. Electrical and thermal behavior of polypropylene filled with copper particles. Composites, 2005, 36 (A): 1545–1554.
25. Velasco J., Ardanuy M., Realinho V. et al. Polypropylene/clay nanocomposites: combined effects of clay treatment and compatibilizer polymers on the structure and properties. J. Appl. Polym. Sci., 2006, 102: 1213–1223.
https://doi.org/10.1002/app.2441926. Encyclopedia of polymers. Ed. Kabanov V. A. Crystallinity. M.: Sovetskaya entsiklopediya, 1977, 3: 576 (in Russian).