№3 (2017) 2

https://doi.org/10.15407/polymerj.39.03.154

Structure, electrical, thermophysical and mechanical properties of metal-filled composites formed in a magnetic field

 A.I. Misiura1, Ye. P. Mamunya2, V. L. Demchenko2, N. P., Kulish1, G. P. Syrovets2

 

1 Taras Shevchenko National University of Kyiv

4, Hlushkovа prospekt, Kyiv, 03022, Ukraine

2 Institute of macromolecular chemistry of NAS of Ukraine

48, Kharkivs’ke shose, Kyiv, 02160, Ukraine

 

Polym. J., 2017, 39, № 3: 154-162.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

Polymer composites based on polypropylene (PP) and copolyamide (CPA) filled with dispersed iron (Fe) were modified in magnetic field in a state of melt. As a result, the filler formed a one-dimensional conductive structure. Morphology of the initial and modified composites, their conductivity, thermophysical and mechanical characteristics have been studied using thermomechanical analysis (TMA) and differential scanning calorimetry (DSC). Modification of composites in magnetic field changes the character of fillers distribution in the polymer matrix, that, in turn affects on conductivity and modulus of elasticity of composites. Hence, the percolation threshold for the initial PP-Fe and CPA-Fe composites is 19,7 and 29,5 % vol., for the modified composites it is 3,3 % vol. and 5,0 % vol. respectively. For the samples with high concentration of filler, the modulus of elasticity for modified composites is higher than for the initial systems. The addition of a metal filler to composites results in an increase the crystallinity of it’s polymer matrix.

 

Key words: polymer composites, modification in magnetic field, conductivity, thermophysical characteristics, modulus of elasticity.

 

References

  1. 1. Amancio-Filho S.T., Santos J.F. Joining of polymers and polymer-metal hybrid structures: resent developments and trends. Polym. Eng. Sci., 2009, 49: 1461–1476.
    https://doi.org/10.1002/pen.21424
     
    2. Hanemann T., Vinga D. Polymer-nanoparticle composites: from synthesis to modern applications. Materials, 2010, 3: 3468–3517.
    https://doi.org/10.3390/ma3063468
     
    3. Pugal D., Jung K., Alvo Aabloo, Kim K. Ionic polymer-metal composite mechanoelectrical transduction: review and perspectives. Polym. Int., 2010, 59: 279–289.
    https://doi.org/10.1002/pi.2759
     
    4. Bhattacharya S.K. Metal-filled polymers: properties and applications. New York: Marcel Dekker Inc., 1986: 361, ISBN 0-8247-7555-4.
     
    5. Seanor D.A., Electrical Properties of Polymers. New York: Academic Press, 1982: 379.
     

    6. Mamunya Ye.P., Iurzhenko M.V., Lebedev E.V. Levchenko V.V., Chervakov O.V., Matkovska O.K., Sverdlikovska O.S. Electroactive polymer materials, Kyiv: Alpha-reklama, 2013: 398.

     

    7. Mamunya Ye.P., Davydenko V.V., Pissis P., Lebedev E.V. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J., 2002, 38: 1887–1897.
    https://doi.org/10.1016/S0014-3057(02)00064-2

     
    8. Maaroufi A., Haboubi K., Amarti A., Carmona F. Electrical resistivity of polymeric matrix loaded with nickel and cobalt powders J. Mater. Sci., 2004, 39: 265–270.
    https://doi.org/10.1023/B:JMSC.0000007752.08385.e0
     
    9. Frederick R., Yu King R., Kuriakose M. et al. Electrical and thermal transport properties of polyaniline/silver composites and their use as thermoelectric materials. Synth. Met., 2015,199: 196–204.
    https://doi.org/10.1016/j.synthmet.2014.11.020
     
    10. Krupa I., Cecen V., Boudenne A., Prokes J., Novak I. The mechanical and adhesive properties of electrically and thermally conductive polymeric composites based on high density polyethylene filled with nickel powder. Mater. Des., 2013, 51: 620–628.
    https://doi.org/10.1016/j.matdes.2013.03.067
     
    11. Mamunya Y.P., Muzychenko Y.V., Lebedev E.V. et al. PTC effect and structure of polymer composites based on polyethylene/polyoxymethylene blend filled with dispersed iron. Polym. Eng. Sci., 2007, 47 (1): 34–42.
    https://doi.org/10.1002/pen.20658
     
    12. Genetti W. B., Yuan W.L., Grady B.P. et al. Polymer matrix composites: Conductivity enhancement through polypyrrole coating of nickel flake J. Mater. Sci., 1998, 33: 3085–3093.
    https://doi.org/10.1023/A:1004387621165
     
    13. Nurazreena, Hussain L., Ismail H., Mariatti M. Metal filled high density polyethylene composites – electrical and tensile properties. J. Thermop. Compos. Mater., 2006, 19: 413–425.
    https://doi.org/10.1177/0892705706062197
     
    14. Selvin T., Kuruvillab J., Sabu T. Mechanical properties of titanium dioxide-filled polystyrene microcomposites. Mater. Lett., 2004, 58: 281–289.
    https://doi.org/10.1016/S0167-577X(03)00470-1
     
    15. Goc K., Gaska K., Klimczyk K. et al. Influence of magnetic field-aided filler orientation on structure and transport properties of ferrite filled composites. J. Magnetism and Magnetic Mater., 2016, 1: 345–353.
    https://doi.org/10.1016/j.jmmm.2016.06.046
     
    16. Leng J. S., Huang W. M., Lan X. et al. Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. App. Phys. Lett., 2008, 92: 204101-1–204101-3.
    https://doi.org/10.1063/1.2931049
     
    17. Mamunya Ye.P. Levchenko V.V., Lebedev E.V. Thermal conductivity and electrical conductivity of polymer-metal composites with 1D structure of the filler, that was formed in magnetic field. Polymer J. (Ukr.), 2016, 38(1): 3-17 (in Ukrainian).
    https://doi.org/10.15407/polymerj.38.01.003
     
    18. Zhang B., Xie Ch., Hu J., et al. Novel 1–3 metal nanoparticle/polymer composites induced by hybrid external fields. Compos. Sci. Tech., 2006, 66: 1558–1563.
    https://doi.org/10.1016/j.compscitech.2005.11.020
     
    19. Boudenne A., Mamunya Ye. P., Levchenko V.V. et al. Improvement of thermal and electrical properties of Silicone-Ni composites using magnetic field. Eur. Polym. J., 2015, 63: 11–19.
    https://doi.org/10.1016/j.eurpolymj.2014.11.032
     
    20. Bellan C., Bossis G. Field dependence of viscoelastic properties of MR elastomers. Int. J. Mod. Phys. B, 2002, 16: 2447–2453.
    https://doi.org/10.1142/S0217979202012499
     
    21. Varga Z., Filipcsei G., Zrinyi M. Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer, 2006, 47: 227–233.
    https://doi.org/10.1016/j.polymer.2005.10.139
     
    22. Stepanov G.V., Abramchuk S.S., Grishin D.A. et al. Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers. Polymer, 2007, 48: 488–495.
    https://doi.org/10.1016/j.polymer.2006.11.044
     
    23. Agari Y., Uno T. Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci., 1986, 32: 5705–5712.
    https://doi.org/10.1002/app.1986.070320702
     

    24. Boudenne А., Ibos L., Fois M. et al. Electrical and thermal behavior of polypropylene filled with copper particles. Composites, 2005, 36 (A): 1545–1554.

    25. Velasco J., Ardanuy M., Realinho V. et al. Polypropylene/clay nanocomposites: combined effects of clay treatment and compatibilizer polymers on the structure and properties. J. Appl. Polym. Sci., 2006, 102: 1213–1223.
    https://doi.org/10.1002/app.24419
     
    26. Encyclopedia of polymers. Ed. Kabanov V. A. Crystallinity. M.: Sovetskaya entsiklopediya, 1977, 3: 576 (in Russian).