№3 (2017) 3

https://doi.org/10.15407/polymerj.39.03.163

Structure and properties of sol-gel synthesized silver-containing hybrid oligourethane-siloxane systems

 

А.L. Tolstov1, V.F. Matyushov1, O.N. Malanchuk2, D.A. Klimchuk3, E.V. Lebedev1 

 

1 Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivs’ke shose, Кyiv, 02160, Ukraine; E-mail: tolstov@nas.gov.ua

2 Institute of Molecular Biology and Genetics NAS of Ukraine

150, Zabolotnogo str., Kyiv, 03680, Ukraine

3 N.G. Kholodny Institute of Botany NAS of Ukraine

2, Tereshchenkivska str., Kyiv, 01601, Ukraine

 

Polym. J., 2017, 39, № 3: 163-170.

 

Section: Structure and properties.

 

Language: Russian.

 

Abstract:

Hybrid materials were synthesized by interaction of oligomeric diisocyanate with 3-aminopropyltriethoxysilane (APTS) and sol-gel processing of oligomer-monomer composition. A formation of hybrid network as a result of coupling of –NCO and –NH2 functionalized components, and a condensation of –Si(OC2H5)3 terminated oligomer and excess of APTS was detected by FTIR. In accordance with EDX microanalysis a growing APTS content from 50 to 70 % wt. initiates phase inversion process and non-uniform distribution of components and active additives in a bulk of hybrid compositions were observed. The results demonstrate an increasing averaged molecular weight between cross-links from 525 to 554 Da, decreasing crosslinking density from 1,51 to 1,38 mmol/cm3, and increasing theoretical hybrid network mesh size from 2,6 to 4,1 nm while APTS content grows up to 70 wt.%. Appropriate changes in molecular structure parameters of hybrid matrix and its chemical nature increase a sorption capacity of the composites against H2O from 700 to 2400 %. Introducing Ag+ into hybrid composites and its UV irradiation pretreatment provides a high bactericidal effect.

 

Keywords: oligourethane, silsesquioxane, hybrid materials, sol-gel synthesis, bactericidal activity.

 

References

  1. 1. Kirk-Othmer Encyclopedia of Chemical Technology. New York: John Wiley & Sons, 2007: 22950. ISBN 9780471238966.
     
    2. Encyclopedia of Polymer Science and Technology. Weinheim: John Wiley & Sons, Inc., 2004: 12344. ISBN 9780471440260.
     
    3. Hybrid Materials: Synthesis, Characterization, and Applications / G. Kickelbick (Ed.). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007: 498. ISBN 9783527312993.
     
    4. Functional Hybrid Materials. P. Gomez-Romero, C. Sanchez (Eds.). Boston: Wiley-VCH Verlag GmbH & Co. KGaA, 2004: 417. ISBN 9783527304844.
     
    5. Fahmi A., Pietsch T., Mendoza C., Cheval N. Functional hybrid materials. Mater. Today, 2009, 12: 44-50.
    https://doi.org/10.1016/S1369-7021(09)70159-2
     
    6. Textor T., Mahltig B. A sol–gel based surface treatment for preparation of water repellent antistatic textiles. Appl. Surface Sci., 2010, 256: 1668-1674.
    https://doi.org/10.1016/j.apsusc.2009.09.091
     
    7. Pathan S., Ahmad S. Synergistic effects of linseed oil based waterborne alkyd and 3-isocynatopropyl triethoxysilane: highly transparent, mechanically robust, thermally stable, hydrophobic, anticorrosive coatings. ACS Sustain. Chem. Eng., 2016, 4: 3062-3075.
    https://doi.org/10.1021/acssuschemeng.6b00024
     
    8. Dieudonne X., Montouillout V., Jallot E., Fayon F., Lao J. Bioactive glass hybrids: a simple route towards the gelatin-SiO2-CaO system. Chem. Commun, 2014, 50: 8701-8704.
    https://doi.org/10.1039/C3CC49113G
     
    9. Pietras P., Przekop R., Maciejewski H. New approach to preparation of gelatine/SiO2 hybrid systems by the sol-gel process. Ceramics-Silikaty, 2013, 57, no. 1: 58-65.
     
    10. Ren L., Tsuru K., Hayakawa S., Osaka A. Synthesis and characterization of gelatin-siloxane hybrids derived through sol-gel procedure. J. Sol-Gel Sci. Technol., 2001, 21: 115-121.
    https://doi.org/10.1023/A:1011226104173
     
    11. Martin R.A., Yue S., Hanna J.V., Lee P.D., Newport R.J., Smith M.E., Jones J.R. Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Phil. Trans. R. Soc. A., 2012, 370: 1422-1443.
    https://doi.org/10.1098/rsta.2011.0308
     
    12. Mahony O., Yue S., Turdean-Ionescu C., Hanna J.V., Smith M.E., Lee P.D., Jones J.R. Silica-gelatin hybrids for tissue regeneration: inter-relationships between the process variables. J. Sol-Gel Sci. Technol., 2014, 69: 288-298.
    https://doi.org/10.1007/s10971-013-3214-3
     
    13. Simchi A., Tamjid E., Pishbin F., Boccaccini A.R. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed. Nanotechnol. Biol. Med., 2011, 7: 22-39.
    https://doi.org/10.1016/j.nano.2010.10.005
     
    14. Wu J., Hou S., Ren D., Mather P.T. Antimicrobial properties of nanostructured hydrogel webs containing silver. Biomacromol, 2009, 10: 2686-2693.
    https://doi.org/10.1021/bm900620w
     
    15. Handbook of Sol-Gel Science and Technology. Processing, Characterization and Applications. S. Sakka (Ed.). London: Kluwer Academic Publishers, 2005: 1848. ISBN 978-1-4020-7969-6.
     
    16. Wang T.-L., Ou C.-C., Yang C.-H. Synthesis and properties of organic/inorganic hybrid nanoparticles prepared using atom transfer radical polymerization. J. Appl. Polym. Sci., 2008, 109: 3421-3430.
    https://doi.org/10.1002/app.28462
     
    17. Zaharia A., Musat V., Ghisman V.P., Baroiu N. Antimicrobial hybrid biocompatible materials based on acrylic copolymers modified with (Ag)ZnO/chitosan composite nanoparticles. Eur. Polym. J., 2016, 84: 550-564.
    https://doi.org/10.1016/j.eurpolymj.2016.09.018
     
    18. Rusen E., Mocanu A., Nistor L.C., Dinescu A., Calinescu I., Mustatea G., Voicu S.I., Andronescu C., Diacon A. Design of antimicrobial membrane based on polymer colloids/multiwall carbon nanotubes hybrid material with silver nanoparticles. ACS Appl. Mater. Interfaces, 2014, 6: 17384-17393.
    https://doi.org/10.1021/am505024p
     
    19. Kinninmonth M., Liauw C.M., Verran J., Taylor R.L., Edwards-Jones V., Shaw D. Nano-layered inorganic-organic hybrid materials for the controlled delivery of antimicrobials. Macromol. Symp., 2014, 338: 36-44.
    https://doi.org/10.1002/masy.201100109
     
    20. Bryaskova R., Pencheva D., Nikolov S., Kantardjiev T. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J. Chem. Biol., 2011, 4: 185-191.
    https://doi.org/10.1007/s12154-011-0063-9
     
    21. Apalangya V., Rangari V., Tiimob B., Jeelani S., Samuel T. Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Appl. Surface Sci., 2014, 295: 108-114.
    https://doi.org/10.1016/j.apsusc.2014.01.012
     
    22. de Carvalho A.L., Ferreira B.F., Martins C.H.G., Nassar E.J., Nakagaki S., Machado G.S., Rives V., Trujillano R., Vicente M.A., Gil A., Korili S.A., de Faria E.H., Ciuffi K.J. Tetracarboxyphenylporphyrin-kaolinite hybrid materials as efficient catalysts and antibacterial agents. J. Phys. Chem. C., 2014, 118: 24562-24574.
    https://doi.org/10.1021/jp5077356
     
    23. Wong R.S.H., Ashton M., Dodou K. Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics, 2015, 7: 305-319.
    https://doi.org/10.3390/pharmaceutics7030305
     
    24. Tolstov A.L., Malanchuk O.M., Bey I.M., Klimchuk D.A. Preparation and characterization of antibacterial polymer composites based on poly(vinyl alcohol) and nanoparticulate silver. Polym. J., 2013, 35: 343–349.
     
    25. Tolstov A.L. Chemical and physicochemical fundamentals of preparation of silver based polyurethane systems. Theoret. Experim. Chem., 2013, 49: 331–353.