№3 (2017) 7

https://doi.org/10.15407/polymerj.39.03.188

Synthesis and antimicrobial properties of oligomeric silsesquioxanes containing quaternized nitrogen atoms and hydroxyl groups in organic shell

 

M.A. Gumenna1, N.S. Klimenko1, A.V. Stryutsky1, D.M. Hodyna2, L.A Metelitsa2, A.V. Shevchuk3, V.V. Kravchenko3, V.V. Shevchenko1

 

1 Institute of Macromolecular Chemistry of the National academy of sciences of Ukraine

48, Kharkivs’ke shose, Kyiv, 02160, Ukraine

2 Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine

1, Murmanska str., Kyiv, 02660, Ukraine

3 L. M. Litvinenko Institute of Physical-organic Chemistry and Coal Chemistry NAS of Ukraine

50, Kharkivs’ke shose, Kyiv, 02160, Ukraine

 

Polym. J., 2017, 39, № 3: 188-194.

 

Section: Synthesis polymers.

 

Language: Russian.

 

Abstract:

The prospective use of POSS as an inorganic frame for obtaining the antimicrobial agents is associated with the possibility of combining in a compact structure a significant amount of ammonium groups and the simultaneous regulation of amphiphilicity both by a change in the degree of hydrophobicity (length) of the introduced alkyl substituents and the total number of ionic groups and the nature of the anion and also with increase of thermal stability of the obtained compounds. Considering the complexity and high cost of synthesis of POSS we develop a different approach to the synthesis of reactive organic-inorganic quaternized bactericidal compounds with silsesquioxane inorganic nucleus. It is based on the use as a starting inorganic component of a mixture of oligomeric silsesquioxanes containing in organic shell hydroxyl and tertiary amino groups (OSS (N + OH)) followed by quaternization of amino groups with different agents. The simplicity of synthesis of OSS (N + OH) and its multifunctional reactivity opens new possibilities for the directed production of organic-inorganic antimicrobial agents.

A method for the synthesis of amphiphilic reactive oligomeric silsesquioxanes based on reaction of quaternization of oligosilsesquioxanes containing tertiary amine, primary and secondary hydroxyl groups in organic shell with n-bromdecane was proposed and an antimicrobial activity of those compounds against bacteria and fungi was investigated at this report. The structure of the synthesized compounds was characterized by IR- and 1H NMR spectroscopy. It was found that those compounds do not affect bacterial strains of Staphylococcus aureus (ATCC-25923), Escherichia coli (ATCC-25922) and Pseudomonas aeruginosa (ATCC-27853) and at the same time have a dose-dependent fungistatic effect on the fungus of Candida аlbicans (М 885 АТСС 10231) and clinical isolates of Candida аlbicans, Candida glаbrata, Candida krusei.

 

Keywords: oligomeric silsesquioxanes, quaternarization, quaternary ammonium compounds, antimicrobial activity.

 

References

  1.  

    1. Schwab J.J., Lichtenhan J.D. Appl. Organometal.Chem., 1998, 12, no. 10-11: 707–713.
    https://doi.org/10.1002/(SICI)1099-0739(199810/11)12:10/11<707::AID-AOC776>3.0.CO;2-1
     
    2. Phillips S.H., Haddad T.S., Tomczak S.J. Current Opinion in Solid State and Materials Sci., 2004, 8, no. 1: 21–29.
    https://doi.org/10.1016/j.cossms.2004.03.002
     
    3. Joshi M., Butola B.S. J. of Macromolecular Sci., 2004, 44, no. 4: 389–410.
     
    4. Pielichowski K., Njuguna J., Janowski B., Pielichowski J. Adv. Polym. Sci., 2006, 201: 225–296.
    https://doi.org/10.1007/12_077
     
    5. Wu J., Mather P.T. J. of Macromolecular Sci., Part C: Polymer Reviews, 2009, 49, no. 1: 25–63.
    https://doi.org/10.1080/15583720802656237
     
    6. Gnanasekaran D., Madhavan K., Reddy B.S.R. J. of Scientific and Industrial Research, 2009, 68, no. 6: 437–464.
     
    7. Ayandele E., Sarkar B., Alexandridis P. Nanomaterials, 2012, 2, no. 4: 445–475.
    https://doi.org/10.3390/nano2040445
     
    8. Zhang W., Muller A.H.E. Progress in Polymer Sci., 2013, 38, no. 8: 1121–1162.
    https://doi.org/10.1016/j.progpolymsci.2013.03.002
     
    9. Zhou H., Ye Q., Xu J. Mater. Chem. Front., 2017, 1, no. 2: 212–230.
    https://doi.org/10.1039/C6QM00062B
     
    10. Ghanbari H., Cousins B.G., Seifalian A.M. Macromol. Rapid Commun., 2011, 32, no. 14: 1032–1046.
    https://doi.org/10.1002/marc.201100126
     
    11. Zhou Z., Lu Z. Nanomedicine (Lond.), 2014, 9, no. 15: 2387–2401.
    https://doi.org/10.2217/nnm.14.133
     
    12. Kannan R.Y., Salacinski H.J., Edirisinghe M.J., Hamilton G., Seifalian A.M. Biomaterials, 2006, 27, no. 26: 4618–4626.
    https://doi.org/10.1016/j.biomaterials.2006.04.024
     
    13. Crowley C., Klanrit P., Butler C.R., Varanou A., Plat M., Hynds R.E., Chambers R.C., Seifalian A.M., Birchall M.A., Janes S.M. Biomaterials, 2016, 83: 283–293.
    https://doi.org/10.1016/j.biomaterials.2016.01.005
     
    14. Fong H., Dickens S.H., Flaim G.M. Dental Materials, 2005, 21, no. 6: 520–529.
    https://doi.org/10.1016/j.dental.2004.08.003
     
    15. Kim S.K., Heo S.J., Koak J.Y., Lee J.H., Lee Y.M., Chung D.J., Lee J.I., Hong S.D. J. of Oral Rehabilitation, 2007, 34, no. 5: 389–395.
    https://doi.org/10.1111/j.1365-2842.2006.01671.x
     
    16. McCusker C., Carroll J.B., Rotello V.M. Chem. Commun., 2005, no. 8: 996–998.
    https://doi.org/10.1039/b416266h
     
    17. Ye X., Gong J., Wang Z., Zhang Z., Han S., Jiang X. Macromol Biosci., 2013, 13, no. 7: 921–926.
    https://doi.org/10.1002/mabi.201200461
     
    18. Majumdar P., Lee E., Gubbins N., Stafslien S.J., Daniels J., Thorson C.J., Chisholm B.J. Polymer, 2009, 50, no. 5: 1124–1133.
    https://doi.org/10.1016/j.polymer.2009.01.009
     
    19. Majumdar P., He J., Lee E., Kallam A., Gubbins N., Stafslien S.J., Daniels J., Chisholm B.J. J. Coat. Technol. Res., 2010, 7, no. 4: 455–467.
    https://doi.org/10.1007/s11998-009-9197-x
     
    20. Liu Y., Leng C., Chisholm B., Stafslien S., Majumdar P., Chen Z. Langmuir, 2013, 29, no. 9: 2897–2905.
    https://doi.org/10.1021/la304571u
     
    21. Chojnowski J., Fortuniak W., Rosciszewski P., Werel W., Lukasiak J., Kamysz W., Halasa R. J. of Inorganic and Organometallic Polymers and Materials, 2006, 16, no. 3: 219–230.
    https://doi.org/10.1007/s10904-006-9048-5
     
    22. Gerba C.P. Appl. Environ. Microbiol., 2015, 81, no. 2: 464–469.
    https://doi.org/10.1128/AEM.02633-14
     
    23. Sauvet G., Dupond S., Kazmierski K., Chojnowski J. J. of Appl. Polymer Sci., 2000, 75, no. 8: 1005–1012.
    https://doi.org/10.1002/(SICI)1097-4628(20000222)75:8<1005::AID-APP5>3.0.CO;2-W
     
    24. Sauvet G., Fortuniak W., Kazmierski K., Chojnowski J. J. of Polymer Sci.: Part A: Polymer Chemistry, 2003, 41, no. 19: 2939–2948.
    https://doi.org/10.1002/pola.10895
     
    25. Davies A., Bentley M., Field B.S. J. Appl. Bact., 1968, 31, no. 4: 448–461.
    https://doi.org/10.1111/j.1365-2672.1968.tb00394.x
     
    26. Xue Y., Xiao H., Zhang Y. Int. J. Mol. Sci., 2015, 16, no. 2: 3626–3655.
    https://doi.org/10.3390/ijms16023626
     
    27. Mori H., Lanzendorfer M.G., Muller A.H.E., Klee J.E. Macromolecules, 2004, 37, no. 14: 5228–5238.
    https://doi.org/10.1021/ma035482o
     
    28. Tereshchenko T.A., Shevchuk A.V., Shevchenko V.V., Snegir S.V., Pokrovskii V.A. Polym Sci. Ser. A, 2006, 48, no. 12: 1248–1256.
    https://doi.org/10.1134/S0965545X06120042
     
    29. Bliznyuk V.N., Tereshchenko T.A., Gumenna M.A., Gomza Yu P., Shevchuk A.V., Klimenko N.S., Shevchenko V.V. Polymer, 2008, 49, no. 9: 2298–2305.
    https://doi.org/10.1016/j.polymer.2008.02.044
     
    30. Bauer A., Kirby W., Sherris J., Turck M. Am. J. Clin. Pathol., 1966, 45, no. 4: 493–496.
    https://doi.org/10.1093/ajcp/45.4_ts.493
     
    31. Pappas P.G., Kauffman C.A., Andes D.R., Clancy C.J., Marr K.A., Ostrosky-Zeichner L., Reboli A.C., Schuster M.G., Vazquez J.A., Walsh T.J., Zaoutis T.E., Sobel J.D. Clinical Infectious Diseases, 2016, 62, no. 4: 1–50.
    https://doi.org/10.1093/cid/civ1194
     
    32. Lozano-Chiu M., Nelson P.W., Paetznick V.L., Rex J.H. J. of clinical microbiology, 1999, 37, no. 5: 1625–1627.
     
    33. Kirkpatrick W.R., Turner T.M., Fothergill A.W., McCarthy D.I., Redding S.W., Rinaldi M.G., Patterson T.F. J. of clinical microbiology, 1998, 36, no. 11: 3429–3432.