2016 (3) 1
https://doi.org/10.15407/polymerj.38.03.185
Natural polymers as a nanomatrices for the transport of drugs
L.A. Orel, S.V. Riabov, L.V. Kobrina, L.A. Goncharenko
Institute of Macromolecular Chemistry NAS of Ukraine
48, Kharkivske shose, Kyiv, 02160, Ukraine
Polym. J., 2016, 38, no. 3: 185-191.
Section: Review.
Language: Ukrainian.
Abstract:
The short review presented deals with literature data concerning a natural materials used for forming drugs’ nanocarriers, methods for surface modification of carriers to enhance their therapeutic effect, and a range of drugs that can be applied to treat diseases, involving a method for directional transport of drugs. The molecules of the drug could be located on the surface (nanospheres) or encapsulated inside (nanocapsules) a polymer. It is shown, that natural polymers satisfy the requirements of modern medicine: have a subcellular size, stable properties, can protect the drug from enzymatic and chemical degradation in the body. These matrices are highly compatible with biological tissues and capable of biodegradation. They are non-toxic, nonthrombogenic, nonimmunogenic, noninflammatory and suitable for encapsulating a variety of drugs, proteins, peptides or nucleic acids.
Such natural polymers, as cyclodextrins (CD), are a special class of polymers due to their unique properties of complex formation. They can accelerate or slow of drug release, increase solubility of slightly soluble drugs in water, as well as to increase their stability and biocompatibility. Matrices based on cyclodextrins help to convert a liquid drugs into microcrystalline or amorphous powders. CD-containing nanoparticles can transfer drugs such as piroxicam, nitroglycerin, nimesulide, indomethacin, diclofenac sodium and many others into various dosage forms, like solutions, ointments, suppositories, tablets.
Key words: nanoparticles, drugs, natural polymers, encapsulation, biodegradability.
References
- 1. Pat. US5874111 A. Process for the preparation of highly monodispersed hydrophilicpolymeric nanoparticles of size less than 100 nm 1999. Maitra A., Prashant K.G., Sanjeeb K.S. et al.
- 2. Alonso M.J. Biomed. Pharmacother. 2004. 58, no. 3: 168.
- 3. Alvarez L.C., Rosa dos Santos J.F., Sosnik A. et al. Hydrogels with cy clodextrins as highly versatile drug delivery systems. In: Stein D. B. Ed., Handbook of Hydrogels: Properties, Preparations and Applications. New York. Nova Publishers. 2009: 61.
- 4. Atherden L.M. Biochem. J. 1985. 69, no. 1: 75.
- 5. Avnesh K., Yadav S.K., Yadav S.C. et al. Coll. Surf. B: Biointerfaces. 2010. 75, no. 1: 1.
- 6. Babu R.J., Dayal P., Singh M. Drug Deliv. 2008. 15, no. 6: 381.
- 7. Bajpai A.K., Choubey J. J. Mater. Sci. Mater. Med. 2006. 1, no. 4: 345.
- 8. Bhadra D., Bhadra S., Jain P. et al. Pharmazie. 2002. 57, no. 1: 5.
- 9. Bibby D.C., Davies N.M., Tucker I.G. Int. J. Pharm. 2000. 197, no. 1–2: 1.
- 10. Bittner B., Ronneberger B., Zange R. et al. J. Microencapsul. 1998. 15, no. 4: 495.
- 11. Budhian A., Siegel S.J., Winey K.I. J. Microencapsul. 2005. 22, no. 7: 773.
- 12. Calvo P., Remunan-Lopez C., Vila-Jato J.L. et al. J. Appl. Polym. Sci. 1997. 63, no. 1: 125.
- 13. Carrasquillo K.G., Stanley A.M., Aponte-Carro J.C. et al. J. Contr. Rel. 2001. 76, no. 3: 199.
- 14. Coviello T., Matricardi P., Marianecci C. et al. J. Contr. Rel. 2007. 119, no. 1: 5.
- 15. Damge C., Maincent P., Ubrich N. J. Contr. Rel. 2007. 117, no. 2: 163.
- 16. Davis S. Interdisc. Sci. Rev. 2000. 25, no. 3: 175.
- 17. De Campos A.M., Sanchez A., Alonso M.J. Int. J. Pharm. 2001. 224, no. 1–2: 159.
- 18. Derakhshandeh K., Erfan M., Dadashzadeh S. Eur. J. Pharm. Biopharm. 2007. 66, no. 1: 34.
- 19. Erbacher P., Zou S., Bettinger T. et al. Pharm. Res. 1998. 15, no. 9: 1332.
- 20. Espuelas M.S., Legrand P.S., Loiseauet P.M. et al. J. Drug Target. 2002. 10, no. 8: 593.
- 21. Fessi H., Puisieux F., Devissaguet J. et al. Int. J. Pharm. 1989. 55, no. 1: 1.
- 22. Gao H., Wang Y.N., Fan Y.G. et al. J. Contr. Rel. 2005. 107, no. 1: 158.
- 23. Garcia-Gonzalez N., Kellaway I.W., Blanco-Fuente H. et al. Int. J. Pharm. 1993. 100, no. 1: 25.
- 24. Gulyaev A.E., Gelperina S.E., Skidan I.N. et al. Pharm. Res. 1999. 16, no. 10: 1564.
- 25. Gursoy A., Eroglu L., Ulutin S. et al. Int. J. Pharm. 1989. 52, no. 2: 101.
- 26.Hakkarainen B., Fujita K., Immel S. et al. Carbohydr. Res. 2005. 340, no. 8: 1539.
- 27. Hedberg E.L., Kroese-Deutman H.C., Shih C.K. et al. Biomaterials. 2005. 26, no. 22: 4616.
- 28. Illum L., Davis S.S. FEBS Lett. 1984. 167, no. 1: 79.
- 29. Irie T., Uekama K. J. Pharm. Sci. 1997. 86, no. 2: 147.
- 30. Kaur A., Jain S., Tiwary A.K. Acta Pharm. 2008. 58, no. 1: 61.
- 31. Kommareddy S., Tiwari S.B., Amiji M.M. Technol. Cancer Res. T. 2005. 4, no. 1: 615.
- 32. Kreuter J. Nanoparticles. Encyclopedia of Pharmaceutical Technology. New York: Marcel Dekker. 1994: 165.
- 33. Kumar R.V., Mohapatra M.N., Kong S.S. et al. J. Nanosci. Nanotechnol. 2004. 4, no. 8: 990.
- 34. Kumar P.S., Ramakrishna S., Saini T.R. et al. Pharmazie. 2006. 61, no. 7: 613.
- 35. Langer R. Accounts Chem. Res. 2000. 33, no. 2: 94.
- 36. Lee M., Kim S.W. Pharm. Res. 2005. 22, no. 1: 1
- 37. Levitzki A. FASEB J. 1992. 6, no. 14: 3275.
- 38. Lin C.C., Metters A.T. Adv. Drug Deliv. Rev. 2006. 58, no. 12–13: 1379.
- 39. Liu L., Won Y.J., Cooke P.H. et al. Biomaterials. 2004. 25, no. 16: 3201.
- 40. Loftsson T., Duchene D. Int. J. Pharm. 2007. 329, no. 1–2: 1.
- 41. Loftsson T., Kristmundsdottir T. ACS Symр. Ser. 1993. 520, no. 1: 168.
- 42. Lu Z., Yeh T.K., Tsai M. et al. Clin. Cancer Res. 2004. 10, no. 1: 76.
- 43. Matsumoto J., Nakada Y., Sakurai K. et al. Int. J. Pharm. 1991. 185, no. 1: 93.
- 44. Mittal G., Sahana D.K., Bhardwaj V. et al. J. Contr. Rel. 2007. 119, no. 1: 77.
- 45. Oppenhiem R.C. Int. J. Pharm. 1981. 8, no. 3: 217.
- 46. Pan Y., Li Y., Zhao H. et al. Int. J. Pharm. 2002. 249, no. 1–2: 139.
- 47. Panyam J., Labhasetwar V. Adv. Drug Deliv. Rev. 2003. 55, no. 3: 329.
- 48. Patil S.D., Papadimitrakopoulos F., Burgess D.J. Diab. Technol. Ther. 2004. 6, no. 6: 887.
- 49. Pavankumar K., Hemanth K., Niranjan R. et al. BioImpacts. 2012. 2, no. 2: 71.
- 50. Pinto R.C., Neufeld R.J., Ribeiro A.J. et al. Nanomedicine. 2006. 2, no. 1: 8.
- 51. Rieux A., Fievez V., Garinot M. et al. J. Contr. Rel. 2006. 116, no. 1: 1.
- 52. Rodriguez T.C., Alvarez L.C., Rodriguez P.A. et al. Eur. J. Pharm. Biopharm. 2007. 66, no. 1: 55.
- 53. Sahana D.K., Mittal G., Bhardwaj V. et al. J. Pharm. Sci. 2008. 97, no. 4: 1530.
- 54. Sarmento B., Ribeiro A., Veiga F. et al. Pharm. Res. 2007. 24, no. 12: 2198.
- 55. Seijoa B. Int. J. Pharm. 1990. V. 62: 1.
- 56. Soppimath K.S., Aminabhavi T.M., Kulkarni A.R. et al. J. Contr. Rel. 2001. 70, no. 1–2: 1.
- 57. Tiyaboonchai W. Naresuan University J. 2003. 11, no. 3: 51.
- 58. Wang L., Chaw C.S., Yang Y.Y. et al. Biomaterials. 2004. 25, no. 16: 3275.
- 59. Zambaux M.F., Bonneaux F., Gref R. et al. J. Contr. Rel. 1999. 60, no. 2–3: 179.