2016 (3) 5

https://doi.org/10.15407/polymerj.38.03.218

Effect of nano-additives on the structure-formation in polymer mixture melts

 

N.M. Rezanova, V.P. Plavan, V.G. Rezanova, Y.A. Budash, V.M. Bogatyrev

 

Kyiv National University of Technology and Design

2, Nemirovich-Danchenko str., Kyiv, 01011, Ukraine, mfibers@ukr.net

A.A. Chuyko Institute of Surface Chemistry of National Academy of Sciences

17, General Naumov str., Kyiv, 03164, Ukraine, ryash@i.ua

 

Polym. J., 2016, 38, no. 3: 218-224.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

The influence of the concentration of nano-additive titanium oxide/silica (TiO2/SiO2) on the processes of structure-formation in thermodynamically incompatible mixtures of polypropylene/co-polyamide (PP/CPA) was researched. It is shown that in the presence of modifier the nature of flowing and structure-formation does not change – in the nano-filled mixture, as in the original one, PP forms the fine-fiber continuous shell, microfiber and particles in the matrix of CPA . Established that the mixed oxide exhibits compatibilizer effect: the value of interphase tension reduces, the degree of dispersion and deformation of the dispersed phase droplets increases, which leading to a decrease in the average diameter of PP microfibers and narrowing of their size distribution. The positive effect of the filler on the fiber-formation is explained by the stabilizing effect of nanoparticle TiO2/SiO2 in the finest microfiber PP due to increased lifetime (~ by 5 times) and growth inhibition of wave amplitude of destructive perturbations. Changing of the content of nano-additive in the melt mixture makes it possible to manage the process of fiber-formation. Nanoparticles TiO2/SiO2 exert maximum influence on phase morphology of modified mixture at concentration of 1,0 % mass., which corresponding to a minimum value of the surface tension.

 

Key words: mixture of polymers, nano additive, microfiber, interphase tension.

 

References

  1. 1. Hlubish P.A., Irkley V.M., Kleiner Iu.Ia., Rezanova N.M., Tsebrenko M.V., Kerner S.M., Omelchenko V.D., Turchanenko Iu.T. Vysokotekhnolohichni konkurentospromozhni i ekolohichnooriientovani voloknysti materialy ta vyroby z nykh [High-tech competitive and environmentally oriented fibrous materials and products thereof], К.: «Aristei», 2007: 263 [in Ukrainian].
  2. 2. Utraсki L.A., Wilkie C.A. Polymer blends handbook. London: Springer New York Heidelberg Dordrecht. 2014: 2373.
  3. 3. Pan Z., Zhu M., Chen Y., Chen L., Wu W., Yu Ch., Xu Z., Cheng L. The Variation of Fibrils’ Number in the Sea-island Fiber – Low Density Polyethylene/Polyamide 6. Fibers and Polymers. 2010.  11, no. 3: 494-499.
  4. 4. Rezanova V.G., Tsebrenko M.V. Influence of binary additives of compatibilizers on the micro- and macrorheological properties of melts of polypropylene-copolyamide mixtures. J. of Eng. Physics and Thermophysics.  2009.  81,  no. 4: 766-773.
  5. 5. Tsebrenko M.V., Rezanova V.G., Tsebrenko I.A.  Polypropylene microfibers with filler in nano state. Chemistry & Chemical Technology.  2010.  4, no. 3: 253-260.
  6. 6. Li W., Karger-Koksis J., Schlarb A.K. Dispersion of TiO2Particles in PET/PP/TiO2 and PET/PP/PP-g-MA/TiO2 Composites Prepared with Different Blending Procedure. Macromol. Mater. Eng. 2009.  V. 294: 582-589.
  7. 7. Li W., Burkhart T. Preferential Location of TiO2Particles in PET/PP Blend. Proceeding of 19 Congress Francais de Mecanique, August, 2009, Marseille.
  8. 8. Zarko V.Y. Izuchenie kislotnykh tsentrov poverkhnosti vysokodispersnykh dvukhfaznykh oksidnykh sistem opticheskoy spektroskopiey s primeneniem indikatora Gammeta [The study of acid sites surface of highly-phase oxide systems by optical spectroscopy using Hammett indicator]. v kn. Khymyia poverkhnosty kremnezema pod red. akad. A.A. Chuiko. 2001. T.1: 736 [in Russian].
  9. 9. Utracki L., Bakerdjiane Z., Kamal M. A method for the measurement of the true die swell of polymer melts. J. Appl. Polymer Sci. 1975.  19, no.2: 481-501.
  10. 10. Tsebrenko M.V., Kercha Iu.Iu., Rezanova N.M., Danylova G.P. Yavlenie razrushenyia zhydkikh struy v smesiakh polimerov razlichnoy khymycheskoy prirody [The phenomenon of the destruction of liquid jets in the blends of polymers of different chemical nature]. Doklady AN Ukrainy.  1994.   no. 12: 129-133 [in Russian].
  11. 11. Polimernye smesi. T. 1: Systematyka [Polymer mixtures. T1: Systematics]. pod red. D.R. Pola, K.B. Baklella. Per. s angl. V.N. Kulezneva. SPb: Nauchnye osnovy i tekhnologii. 2009: 618 [in Russian].
  12. 12. Elias L., Fenouillot F., Majeste J.C., Cassagnau PH. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Proceeding of 19 Congress Francais de Mecanique, August, 2009, Marseille.
  13. 13. Xiu H., Bai H. W., Huang C. M., Xu C. L., Li X. Y., Fu Q. Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(L-lactide)/poly(ether)urethane blends. eXPRESS Polymer Letters. 2013. 7, no. 3: 261-271.
  14. 14. Lypatov Iu.S., Kosianchuk L.F., Yarovaia N.V. Mezhfaznaia oblast v smesiakh lyneinykh polimerov, poluchennykh in situ [The interphase region in the mixtures of linear polymers, obtained in situ]. Dopovidi NAN Ukrainy. 2003. no. 2: 151-155 [in Russian].
  15. 15. Zaikin A.E., Bobrov T.B. Kompatibilizatsyia smesei nesovmestimykh polimerov napolneniem [Compati-bilization of mixtures of incompatible polymers by filling]. Vysokomol. soedin.  2012. 54, no. 8: 1275-1282 [in Russian].
  16. 16. Karger-Kocsis J., Zhang Z. Structure-Properties Relationships in Nanoparticle/Semicrystalline Thermoplastic Composites. – In book Mechanical properties of Polymers Based on Nanostructure and Morphology. edited by Michler G.H., Balta-Calleja F.J. Boca Ratio: Taylor &Francis Group. 2005: 456.
  17. 17. Chow W.S., Mohd Ishak Z.A. Polyamide blend-based nanocomposites: A review. eXPRESS Polymer Letters. 2015. 9, no. 3: 21-232.
  18. 18. Doan V.A., Yamaguchi M. Interphase transfer of nanofillers and functional liquid between immiscible polymer pairs. Recent res. Devel. Mat. Sci. 2013. V. 10: 59-88.
  19. 19. Han C., D., Funatsu K. An experimental study of droplet deformation and breakup in pressure-driven flows through converging and uniform channels. J. Rheol. 1978. 22, no. 2: 113-133.