2017 (1) 2

https://doi.org/10.15407/polymerj.39.01.14

Structure and properties of crosslinked poly(bisphenol A)cyanurate modified with oligobutadiene diisocyanate

 

O.P. Grigoryeva, A.M. Fainleib, V.V. Grytsenko

 

Instutute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv 02160, Ukraine

Nezhin Mykola Gogol State University

2, Grafska Street, Nezhin 16600, Chernigov District, Ukraine

 

Polym. J., 2017, 39, No. 1: 14-23.

 

Section: Structure and properties.

 

Language: Russian.

 

Abstract:

 

Modification of polycyanurate network (PCN) by reactive rubber terminated with isocyanate end groups, oligobutadienediisocyanate (OIC), was studied. It has been established by using IR-spectroscopy and gel fraction content determination, that at polycyanurate network formation from dicyanate ester of bisphenol A (DCBA) in the presence of above mentioned rubber, the latter is incorporated chemically into the network structure. At that the parallel reactions of polycyclotrimerization of cyanate and isocyanate groups take place as well as their copolycyclotrimerazation with formation of combined (cyanurate-isocyanurate) heterocycles in the junctions of the hybrid PCN-OIC network. Microphase structure and morphology of the PCN-OIC hybrid networks were studied by using DMTA, DSC and SEM techniques. It has been settled that the part of the non-incorporated into the hybrid PCN-OIC network modifier increases up to 16 – 18 % with increasing the modifier content up to 30 – 40 % in the system and it forms the separate microphases. It has been revealed that two competitive processes determine the final microphase structure and properties of the PCN-OIC hybrid networks: rise of network crosslink density at increasing conversion of functional groups of the cyanate component, and increasing defectiveness of the network appeared at chemical incorporation of the modifier.

 

Keywords: polycyanurates, oligobutadienediisocyanate, viscoelastic properties, hybrid polymer networks, microphase structure.

 

Литература

  1. 1. Thermostable polycyanurates. Synthesis, modification, structure and properties. A. Fainleib (Ed.), New York. Nova Science Publisher, 2010. ISBN 978-1-60876-907-0.
     
    2. McConnell V.P. Resins for the Hot Zone, Part II: BMIs, CEs, benzoxazines and phthalonitriles. High Perform. Compos. 2009, September issue: 49–54.
     
    3. Grigoryeva O., Fainleib A., Sergeeva L.M. Thermoplastic polyurethane elastomers in interpenetrating polymer networks. In: Handbook of Condensation Thermoplastic Elastomers. S. Fakirov (Ed.), Weinheim, Wiley-VCH, 2005: 325-354. ISBN 978-3-527-30976-4.
    https://doi.org/10.1002/3527606610.ch12
     
    4. Fainleib A., Grigoryeva O., Pissis P. Modification of Polycyanurates by Polyethers, Polyesters and Polyurethanes. Hybrid and Interpenetrating Polymer Networks. In: Focus on Natural and Synthetic Polymer Science. C. Vasile, G.E. Zaikov (Eds.), New York: Nova Science Publishers, 2006: P. 49-84. ISBN 1-60021-115-1.
     
    5. Chemistry and Technology of Cyanate Ester Resins. I. Hamerton (Ed.), Glasgow: Chapman & Hall, 1994. ISBN 0 7514 0044 0.
     
    6. Nair C.P.R., Mathew D., Ninan K.N. Cyanate ester resins, recent developments. Adv. Polym. Sci. 2000, 155: 1-99.
     
    7. Fainleib A. M., Shantalii T. A., Sergeeva L. M. Polycyanurate-polyurethane semi-IPNs. Compos. Polym. Mat., 1993, 54: 14-17.
     
    8. Fainleib A. M., Shantalii T. A., Pankratov V. A. Copolymers of cyanate esters and plastics based on them (review). Compos. Polym. Mat., 1991, 49: 39-53.
     
    9. Uhlig C., Bauer J., Bauer M. Toughening of highly cross-linked polycyanurates with epoxy- and phenol-terminated butadiene-acrylonitrile rubbers. Macromol. Symp., 1995, 93: 69-79.
    https://doi.org/10.1002/masy.19950930111
     
    10. Uhlig C., Bauer J., Bauer M. Rubber toughening of polycyanurates. Polym. Mater. Sci. Eng., 1995, 71: 748-749.
     
    11. Porter D. S., Bhattacharjee S., Ward T. C. Thermally stable elastomeric tougheners for polycyanurate thermosetting systems. Polym. Mater. Sci. Eng., 1998, 79: 186-187.
     
    12. Hillermeier R. W., Hayes B. S., Seferis J. C. Processing of elastomeric toughened cyanate esters through a modified resin transfer molding technique. Polym. Compos., 1999, 20, no. 1: 155-165.
    https://doi.org/10.1002/pc.10343
     
    13. Hayes B. S., Seferis J. C., Parker G. A. Rubber modification of low temperature cure cyanate ester matrices and the performance in glass fabric composites. Polym. Eng. Sci., 2000, 40, no. 6: 1344-1349.
    https://doi.org/10.1002/pen.11263
     
    14. Cao Z. Q., Muchin F., Pascault J. P. Influence of cure cycles on morphologies and properties of rubber- or thermoplastic-modified cyanate ester networks. Polym. Mater. Sci. Eng., 1995., 71: 752-753.
     
    15. Fainleib O. M., Grygoryeva O. P. Structure and properties of crosslinked poly(bisphenol A)cyanurate modified by methylethylketone oligoisoprene diacylhydrozone. Polymernyy J., 2008, 30, no. 1: 14-20.
     
    16. Rosovitsky V. F, Shifrin V. V. Automatic relaxometer. Physical methods of polymer investigations. Kyiv: Naukova Dumka, 1981: 82-91.
     
    17. Nielsen L. Mechanical properties of polymers and polymer compositions. Moscow: Chemistry 1978.
     
    18. Tiger R. P, Sarinina L. I, Entelis S. G. Polymerization isocyanates. Rus. Chem. Reviews, 1972, 41, no. 9: 1672-1695.
    https://doi.org/10.1070/RC1972v041n09ABEH002092
     
    19. Korshak V. V, Vinogradova S. V, Pankratov V. A, Larina L. F. Method of producing of copolymers. Patent 520375 USSR, MKI C 08 G 18/06, 1976.
     
    20. Georjon O., Schwach G., Gerard J.-F., Galy J., Albrand M., Dolmazon R. Molecular mobility in polycyanurate networks investigated by viscoelastic measurements and molecular simulations. Polym. Eng. Sci., 1997, 37, no. 10: 1606-1620.
    https://doi.org/10.1002/pen.11809