2017 (1) 4
https://doi.org/10.15407/polymerj.39.01.32
The viscoelastic properties of the poly(methyl methacrylate) modified by polyurethane with different molecular weight of oligoester block
N.V. Babkina, O.I. Antonenko, L.F. Kosyanchuk
Institute of Macromolecular Chemistry NAS of Ukraine
48, Kharkivske shose, Kyiv, 02160, Ukraine
Polym. J., 2017, 39, No. 1: 32-38.
Section: Structure and properties.
Language: Russian.
Abstract:
The viscoelastic properties of crosslinked polyurethanes (PU) based on oligo(diethylene glycol) adipate (ODA) with MM 800, 1500, 2500 and poly(methyl methacrylate) modified by polyurethanes with corresponding value of MM ODA have been studied. It was found that the blend of PMMA/PU with ratio 70/30 % wt. is the two-phase polymer system with well-defined interfacial area and it content and composition depends on the MM ODA. The proportional decreasing of the glass transition temperature (Tg) for crosslinked PU with increasing of MM ODA has been shown, but such regularity for the blend of PMMA/PU is not observed. Analysis of viscoelastic functions for PMMA modified by PU with different MM ODA has demonstrated that the viscoelastic characteristics, the degree of phase separation in the system and its phase structure are significantly determined by the molecular weight of oligoester block. It may be caused by the changes of viscosity of the initial reaction system and kinetic conditions of the blend formation.
Key words: modified poly(methyl methacrylate), polyurethane, molecular weight of oligoester block, viscoelastic properties, interfacial area, degree of segregation.
Литература
-
1. Michler G.H. High-impact rubber-modified polymers, Electron microscopy of polymers. Berlin:: Springer, 2008: 351–371. 2. Hur T., Manson J.A., Hertzberg R.W., Sperling L.H. Fatigue behavior of acrylic interpenetrating polymer networks (PartII). J. Appl. Polym. Sci.,1990, 39, no. 9: 1933–1947.
https://doi.org/10.1002/app.1990.0703909093. Jansen B.J.P., Rastogi S., Meijer H.E.H. and Lemstra P. Rubber-modified glassy amorphous polymers prepared via chemically induced phase separation. 1. Morphology development and mechanical properties. Macromolecules, 2001, 34, no. 12: 3998–4006.
https://doi.org/10.1021/ma001809z4. Gres I.M., Vaniev M.A., Novakov I.A. Struktura i svoystva kompozitsionnyih materialov, poluchaemyih reaktsionnyim sovmescheniem sistem kauchuk – termoplast. In: Novyie polimernyie kompozitsionnyie materialyi. Mater. IV mezhdunar. nauch.-prakt. konf., g. Nalchik, 21-25 sent. Nalchik: GOUVPO “Kabardino-Balkar. gos. in-t im. H.M. Berbekova”, 2008: 100–102[in Russian]. 5. Novakov I.A., Vaniev M.A., Shilina V.V., Bondarenko L.A. Poliepihlorgidrin – polimetilmetakrilatnyie kompozityi. Izvestiya vuzov. Tehnologiya lyogkoy promyishlennosti, 2011, 12, no. 2: 41–44 [in Russian]. 6. Heim Ph., Wrotecki C., Avenel M., Gaillard P. High impact cast sheets of poly(methyl methacrylate) with low levels of polyurethane. Polymer, 1993, 34, no. 8: 1653–1660.
https://doi.org/10.1016/0032-3861(93)90324-47. Shumskii V. F., Kosyanchuk L. F., Ignatova T. D., Getmanchuk I. P., Grishchenko V. K., Bus’ko N. A., Antonenko O. I., and Babich O. V. Rheokinetics of the in situ formation of a poly(methyl methacrylate)–polyurethane blend in the presence of an oligomeric initiator of polymerization: Morphology and mechanical properties of the final reaction products. Polym. Sci., Ser. B, 2015, 57, no. 5: 488–496 [in Russian].
https://doi.org/10.1134/S15600904150501528. Jajam K.C., Bird S.A., Auad M.L., Tippur H.V. Development and Characterization of a PU-PMMA Transparent. Intepenetrating Polymer Networks (t-IPNs). In: Dynamic Behavior of Materials,Volume 1. Proceedings of the 2011 Annual Conference on Experimental and Applied Mechanics. T.Proulux (Ed.). New York: Springer, 2011:117-121. ISBN: 978-1-4614-0215-2. 9. Jajam K.C., Bird S.A., Auad M.L., Tippur H.V. Tensile, fracture and impact behavior of transparent Interpenetrating Polymer Networks with polyurethanepoly(methyl methacrylate). Polym. Testing, 2013, 32: 889-900.
https://doi.org/10.1016/j.polymertesting.2013.04.01010. Lipatov Yu.S., Kercha Yu.Yu., Sergeeva L.M. Struktura i svoystva poliuretanov. Kiev: Nauk. dumka, 1970: 280 [in Russian]. 11. Babkina N. V., Lipatov Yu. S., Alekseeva T. T., Sorochinskaya L. A. and Datsyuk Yu. I. Effect of Spatial Constraints on Phase Separation during Polymerization in Sequential Semi Interpenetrating Polymer Networks. Polym. Sci., Ser. A, 2008, 50, no. 7: 798–807.
https://doi.org/10.1134/S0965545X0807010912. Kosyanchuk L.F., Ignatova T.D., Antonenko O.I, Vorontsova L.A., Babich O.V.,Shumskiy V.F. Effect of molecular mass of oligoester block and the ratio of components on the formation process of poly(methyl methacrylate)/polyurethane semi-IPN. Ukr. him. Zhurn., 2014, 80, no. 11: 42–51 [in Russian]. 13. Lipatov Yu.S., Rosovitskiy V.F. K opredeleniyu stepeni segregatsii v dvuhfaznyih polimernyih sistemah po parametram relaksatsionnyih maksimumov. Dokl. AN SSSR, 1985, 283, no. 4: 910–913 [in Russian]. 14. Nilsen L. Mehanicheskie svoystva polimerov i ih kompozitsiy. M.: Himiya, 1978: 312 [in Russian]. 15. Babkina N. V., Ignatova T. D., Kosyanchuk L.F., Antonenko O. I., Vorontsova L.A., Babich O.V. Features of the formation, the phase structure, viscoelastic and mechanical properties of the binary polymer matrices based on polymethylmethacrylate, modified by crosslinked polyurethane. Polym. J., 2016, 38, no. 1: 24–33 [in Ukrainian].
https://doi.org/10.15407/polymerj.38.01.02416. Perez J. Issledovanie polimernyih materialov metodom mehanicheskoy spektroskopii. Vyisokomol. soed., Ser. B., 1998, 40, no. 1: 102–135. 17. Bartenev G.M. Relaxation transitions in poly(methyl methacrylate) as Evidenced by dynamic mechanical spectroscopy, thermostimulated creep, and creep rate spectra. Vyisokomol. soed., Ser. B., 2001, 43, no. 7: 1266–1273 [in Russian]. 18. Bartenev G.M., Lomovskoi V.A., Ovchinnikov E.Yu., Karandashova N.Yu., and Tulinova V.V. Structural origin of relaxation properties of high-molecular-mass poly(methyl methacrylate). Vyisokomol. soed., Ser. A, 1993, 35, no. 10: 1659–1667 [in Russian]. 19. Fox T.G. Effect of cis-trans-isomery on glass transition temperature of polymers. Bull. Amer. Phys. Soc., 1956, 1, no. 2: 123–140. 20. Lipatov Y.S. Interfacial regions in the phase-separated interpenetrating networks. Polym. Bull., 2007, 58, no. 1: 105–118.
https://doi.org/10.1007/s00289-006-0632-121. Kosyanchuk L.F., Lipatov Yu.S., Yarovaya N.V., Babkina N.V., Nesterov A.E., and Antonenko O.I. Specific features of in situ formation of blends of two linear incompatible polymers (kinetics, phase separation, thermophysical and viscoelastic properties). Vyisokomol. soed., Ser. A., 2004, 46, no. 9: 1549–1557 [in Russian]. 22. Chang M.C.O., Thomas D.A., Sperling L.H. Group contribution analysis of the damping behavior of homopolymers, statistical copolymers and interpenetrating polymer networks based on acrylic, vinyl, and styrenic mers. J. Polym. Sci., Part B: Polym. Physics, 1988, 26, no. 8: 1627–1640. 23. Gladyishev G.I., Popov V.A. Radikalnaya polimerizatsiya pri glubokih stepenyah prevrascheniya. M.: Nauka, 1974: 244 [in Russian]. 24. Lipatov Yu.S., Alekseeva T.T. Phase-separated interpenetrating polymer networks. Adv. Polym. Sci., 2007, 208: 1–234.
https://doi.org/10.1007/12_2007_116