№2 (2017) 2

https://doi.org/10.15407/polymerj.39.02.83

The effect of poly(titanium oxide) was obtained by sol-gel method on the thermophysical properties of organic-inorganic interpenetrating polymer networks

 

T.V. Tsebrienko, N. V. Yarova, T.T. Alekseeva

 

Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivs’ke shose, Kyiv 02160, Ukraine

 

Polym. J., 2017, 39, № 2: 83-88.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

The thermophysical properties of the organic-inorganic interpenetrating polymer networks (OI IPNs) based on the crosslinked polyurethane (PU), poly(hydroxyethyl methacrylate) (PHEMA) and poly(titanium oxide) (–TiO2–)n was obtained by sol-gel method in the presence of poly(oxypropylene glycol) (POPG) at various molar ratio of titanium isopropoxide (Ti(OPri)4) and water have been studied. The samples of OI IPNs with different content of poly(titanium oxide) were synthesized and it is shown, that varying amount of inorganic component affects on their formation. It is established, that obtained OI IPNs are two-phase systems, which consist of phases with almost pure components and the interfacial region. The mass fractions of polymers in the evolved phases has been calculated using Fox equation. The interfacial region in the studied samples, which is a relative value, was calculated by Frid equation. It is shown that the value of IFR, which the forced compatibility of the system was persisted, increases with the growth of the quantity of inorganic component in OI IPNs and with the molar ratio of  Ti(OPri)4/H2O = 1/1 at the formation of  poly(titanium oxide).

 

Keywords: interpenetrating polymer networks, polyurethane, poly(hydroxyethyl methacrylate), poly(titanium oxide), interfacial region.

 

References

  1.  

    1. Jordan J., Jacob K.I., Tannenbaum R., Shart V.A., Jasiuk I. Experimental trends in polymer nanocomposites – A review. Mater. Sci. Eng. A, 2005, 393, no. 1–2: 1–11.
    https://doi.org/10.1016/j.msea.2004.09.044
     
    2. Yuwono A.H., Liu B., Xue J., Wang J., Elim H.I., Ji W., Li Y., White T.J. Controlling the crystallinity and nonlinear optical properties of transparent TiO2 – PMMA nanohybrids. J. Mater. Chem., 2004, 14, no. 20: 2978–2987.
    https://doi.org/10.1039/B403530E
     
    3. Brincker C.J., Scherer G.W. Sol-gel science: The physics and Chemistry of Sol-Gel Processing, San Diego: Academic Press, 1990.
     
    4. Fujishima A., Rao T.N., Tryk D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol., 2000, 1, no. 1: 1–21.
    https://doi.org/10.1016/S1389-5567(00)00002-2
     
    5. Fadeeva E., Koch J., Chichkov B., Kuznetsov A., Kameneva O., Bityurin N., Sanchez C., Kanaev A. Laser imprinting of 3D structures in gel-based titanium oxide organic-inorganic hybrids. Appl. Phys. A, 2006, 84: 27–33.
    https://doi.org/10.1007/s00339-006-3577-1
     
    6. Yeh J. M., Weng C. J., Huang K. Y., Huang H. Y., Yu Y. H., Yin C. H. Thermal and optical properties of PMMA-Titania hybrid materials prepared by sol-gel approach with HEMA as coupling agent. J. Appl. Polym. Sci., 2004, 94: 400–405.
    https://doi.org/10.1002/app.20909
     
    7. Chiu W. M., Yang C. F., Chao Y. H. Synthesis and characterization of Titanium Dioxide optical film by sol-gel process. J. Appl. Polym. Sci., 2007, 103: 2271–2280.
    https://doi.org/10.1002/app.25398
     
    8. Chatterjee A. Properties improvement of PMMA using nano TiO2. J. Appl. Polym. Sci., 2010, 118: 2890–2897.
    https://doi.org/10.1002/app.32567
     
    9. Kameneva O., Kuznetsov A.I., Smirnova L.A., Rozes L., Sanchez C., Alexandrov A., Bityurin N., Chhor K., Kanaev A. New photoactive hybrid organic–inorganic materials based on titanium-oxo-PHEMA nanocomposites exhibiting mixed valence properties. J. Mater. Chem., 2005, 15: 3380–3383.
    https://doi.org/10.1039/b507305g
     
    10. Alekseeva T.T., Yarovaya N. V., Gorbatenko A. N. Vliyanie titansoderzhashchego sopolimera na termicheskie i opticheskie svojstva organo-neorganicheskih vzaimopronikayushchih polimernyh setok [The influence of titaniumcontaining copolymer on the thermal and optical properties of the organic-inorganic interpenetrating polymer networks]. Ukr. Chem. J., 2015, 81, no. 9–10: 60–66. (in Russian).
     

    11. Babkina N. V., Tsebrienko T.V., Alekseeva T.T. Vyaskouprugie svoistva organo-neorganicheckih VPS na osnove poliuretana, poligidroksietilmetakrilata i polititanoksida, poluchenogo zol-gel metodom [The viscoelastic properties of the organic-inorganic IPN based on polyurethane, poly(hydroxyethyl methacrylate) and polу(titanium oxide), obtained by sol-gel method]. Polym. J., 2016, 38, no. 4: 288–296. (in Russian).

    12. Lipatov Y., Nesterov A. Thermodynamics of Polymer Blends, Lancaster-Basel: Technomic Publishing Co., 1997.
     
    13. Tsebrienko T.V., Alekseeva T.T., Menzheres G. Ya., Ostapyuk S.N. IK-spektralnoe issledovanie gelej polititanoksida i gibridnogo poliuretana [IR-spectral study of the poly(titanium oxide) gels and hybrid polyurethane]. Ukr. Chem. J., 2016, 82, no. 10: 96–108. (in Russian).
     
    14. Fox T.G. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phys. Soc., 1956, 1, no. 2: 123.
     
    15. Hourston D.J., Schafer F.-U. Polyurethane/polystyrene one-shot interpenetrating polymer networks with good damping ability: transition broadening through crosslinking, internetwork grafting and compatibilization. IPNs around the world. Sci. and Engin. New York: Wiley, 1997.
     
    16. Beckman E.J., Karasz F.E., Porter P.S., McKnight W.J. Estimation of the interfacial fraction in partially miscible polymer blends from differential scanning calorimetry measurements. Macromol., 1988, 21, no. 4: 1193–1199.
    https://doi.org/10.1021/ma00182a064
     
    17. Tsebrienko T.V., Alekseeva T.T. Osobennosti kinetiki formirovaniya vzaimopronikayushhix polimernyx setok na osnove poliuretana, poligidroksietilmetakrilata i polititanoksida, poluchennogo zol-gel metodom [The features of the kinetics of formation of organic-inorganic interpenetrating polymer networks (OI IPNs) based on crosslinked polyurethane (PU), polyhydroxyethylmethacrylate (PGEMA) and polititaniumoxide (-TiO2-)n, obtained by sol-gel method]. Polym. J., 2016, 38, no. 1: 47–55. (in Russian).
    https://doi.org/10.15407/polymerj.38.01.047
     
    18. Kuzmenko S.M., Burmistr M.V., Kuzmenko M. Ya. Sintez i svoistva produktov gidroliticheskoi kondensacii tetrabutoksititana [Synthesis and properties of the products of tetrabutoxytitanium hydrolytic condensation. Voprosy khimii i khimicheskoi tekhnologii], 2007, no. 1: 67–72. (in Russian).
     
    19. Salomatina E.V., Bityurin N.M., Gulenova M.V., Gracheva T.A., Drozdov M.N., Knyazev A.V., Kir’yanov K.V., Markin A.V., Smirnova L.A. Synthesis, structure, and properties of organic–inorganic nanocomposites containing poly(titanium oxide). J. Mater. Chem. C, 2013, 39: 6375 –6385.
    https://doi.org/10.1039/c3tc30432a