№2 (2017) 7
https://doi.org/10.15407/polymerj.39.02.115
Polymer blends based on polyurethane ionomer and chitosan
Sergiy Kobylinskyy, Volodymir Shtompel’, Sergii Riabov
Institute of Macromolecular Chemistry NAS of Ukraine
48 Kharkivske shose, Kyiv, 02160, Ukraine
Polym. J., 2017, 39, № 2: 115-121.
Section: Synthesis polymers.
Language: English.
Abstract:
Polymer composites based on binary blends of a synthetic polyurethane cationomer (CPU) and the natural polymer – chitosan, with content ranges from 1 up to 75 wt % have been prepared. The structural morphology of binary blends of ion-containing polymers – polyurethane cationomer (CPU) and chitosan having protonated amino groups – have been studied using WAXS (wide angle X-rays scattering), SAXS (small angle X-rays scattering) methods and DSC (differential scanning calorimetry). The structural formation processes in the blends of two ion-containing polymers are shown to be controlled by the compatibility of their components. It has been established that the synthesized polyurethane cationomer (CPU) is an amorphous polymer and has pronounced microphase structure with spatial periodicity in the arrangement of its hard and soft domains. The Bragg distance (interdomain space distance) between similar (concerning their electronic density) domains (D) was determined to be 4,7 nm. Neat chitosan, having ionic (protonated) amino groups in its chain is shown to be an amorphous-crystalline polymer and there is no periodicity in spatial location of heterogeneous micro-areas (crystallites and amorphous micro-areas) in its structure.
Keywords: polymer composite, blends, morphology, polyurethane ionomer, chitosan, X-ray diffraction.
References
-
1. Zargar V., Asghari M., Dashti A. A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. Chem. Bio. Eng. Rev., 2015, 2, no.3: 204–226.
https://doi.org/10.1002/cben.2014000252. Dufresne A., Thomas S., Pothan L.A. Chemical modification of chitosan and its biomedical application. In: Biopolymer nanocomposites-processing properties and applications. John Wiley & Sons, Inc., Hoboken, New Jersey, 2013:33–51.
https://doi.org/10.1002/97811186099583. Lei Zhang Zeng Y., Cheng Z. Removal of heavy metal ions using chitosan and modified chitosan: A review, Journal of Molecular Liquids, 2016, 214:175–191.
https://doi.org/10.1016/j.molliq.2015.12.0134. Fazli Y., Shariatinia Z. Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous. Materials Science and Engineering C, 2017, 71:641-652.
https://doi.org/10.1016/j.msec.2016.10.0485. Cardoso, G. B., Machado-Silva, A. B., Sabino, M., Santos Jr., A. R., Zavaglia, C. A. Novel hybrid membrane of chitosan/poly(ε-caprolactone) for tissue engineering. Biomatter, 2014, 4, no.1: e29508-1-e29508-9.
https://doi.org/10.4161/biom.295086. Zhang W., Chen J., Chen Y., Xia W., Xiong Y. L., Wang H. Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles. Carbohydrate polymers, 2016, 138: 59-65.
https://doi.org/10.1016/j.carbpol.2015.11.0317. Gharehbagh S.S., Khanjari A., Davaji Y.M. Basti A.A. The Use of Chitosan and Whey Protein Isolate Edible Films Incorporated with Zataria multiflora Boiss. Essential Oil as an Active Packaging Ingredient Against Some Common Foodborne Bacteri Journal of Food Biosciences and Technology, 2017, 7, no.1: 41-48. 8. Rafique A., Zia K. M., Zuber M., Tabasum S., Rehman S. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: a review. International journal of biological macromolecules, 2016, 87: 141-154.
https://doi.org/10.1016/j.ijbiomac.2016.02.0359. Mahdavinia G. R., Hosseini R., Darvishi F., Sabzi M. The release of cefazolin from chitosan/polyvinyl alcohol/sepiolite nanocomposite hydrogel films. Iranian Polymer Journal, 2016, 25, no.11: 933-943.
https://doi.org/10.1007/s13726-016-0480-210. Sullad A. G., Manjeshwar L. S., Aminabhavi T. M. Blend microspheres of chitosan and polyurethane for controlled release of water-soluble antihypertensitive drugs. Polymer Bulletin, 2015, 72, no.2: 265-280.
https://doi.org/10.1007/s00289-014-1271-611. Liu X., Gu X., Sun J., Zhang S. Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane. Carbohydrate Polymers, 2017, 167: 356-363.
https://doi.org/10.1016/j.carbpol.2017.03.01112. Snyder L.R., Kirkland J.J. Introduction to modern liquid chromatography – Jonh Willey&S, New York, Chichester, Brisbene, Toronto., 1979: 863. 13. Kratky O., Pilz I., Schmitz P.J. Absolute intensity measurement of small-angle X-ray scattering by means of a standard sample. J. Colloid Interface Sci.,1966, 21, no.1: 24-34.
https://doi.org/10.1016/0095-8522(66)90078-X14. Lipatov, Yu.S., Shilov, V.V., Gomza, Yu.P., X-Ray Methods for Investigating Polymer Systems, Kiev: Naukova Dumka, 1982, p. 296. 15. Schmidt P.W., Hight R.J. Slit height corrections in small angle X-ray scattering. Appl. Cryst.,1960, V.13: 480-483.
https://doi.org/10.1107/S0365110X6000113816. Vatylev V.N., Laptiy S.V., Kercha Yu.Yu. IR-spectra and Structure of Polyurethanes, Kiev: Naukova Dumka, 1987:188. 17. Eisenberg A. Glass transitions in ionic polymers. Macromolecules, 1971, 4, no.1: 125-128.
https://doi.org/10.1021/ma60019a02618. Ruland W. Small-angle scattering of two-phase systems: Determination and significance of systematic deviations from Porod’s law. J. Appl. Cryst. 1971, 4, no.1: 70-73.
https://doi.org/10.1107/S002188987100626519. Perret R., Ruland W. Eine verbesserte Auswertungsmethode fur die Ront-genkleinewinkelstreuung von Hochpolymeren. Kolloid Z.- Z.Polymere, 1971, B.247:835-843. 20. Porod G. General theory // Small-angle X-ray scattering, Ed. by O. Glatter, O. Kratky. London: Acad. Press, 1982: 17-51. 21. Shtompel’ V.I., Kercha Yu.Yu. Specific features of structure formation of polyurethane ionomers with binary flexible-chain components. Polymer Science, Ser. B, 1996, 38, no. 10: 1776-1780. 22. Shtompel’ V.I., Kercha Yu.Yu., Sukhorukova S. A., Levchenko N.I., Karabanova L.V. Structural morphology of Poly(urethane semicarbazide)-Poly(vinyl pyrrolidone) blends. Polymer Science, Ser. B, 2001, 43, no. 1-2: 21-25. 23. Kwei T.K. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J. Polym. Sci : Polym. Lett. Ed.,1984, 22, no.6: 307-313.
https://doi.org/10.1002/pol.1984.130220603