№2 (2017) 9

https://doi.org/10.15407/polymerj.39.02.129

Meta-substituted poly(arylene ether) with octafluorobiphenylene fragments

 

І.М. Тkachenko

 

Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2017, 39, № 2: 129-134.

 

Section: Synthesis polymers.

 

Language: Ukrainian.

 

Abstract:

Two synthetic pathways have been developed to prepare meta-linked fluorinated poly(arylene ether) with the same chemical composition of a repeating unit. The interaction of decafluorobiphenyl with resorcinol represents a first route of synthesis such polymer. In a second route, the product from decafluorobiphenyl and two-fold molar excess of resorcinol was obtained, then, the specified polymer was prepared from decafluorobiphenyl and the obtained fluorinated monomer. The structures of the obtained polymers were confirmed by 1Н, 19F NMR and IR spectroscopic studies. The choice of initial phenolic type monomers predetermines the growth pattern of the polymer chain of the polyether which affects its molecular weight, mechanical, thermophysical and dielectric characteristics. The resorcinol-based polyether has a higher molecular weight, better mechanical and thermal properties, whereas the polymer obtained by the second route is characterized by lower polydispersity and dielectric constant (2,3 at 10 kHz).

 

Key words: fluorinated poly(arylene ether)s, synthesis, properties, meta-fragments, dielectric permittivity.

 

References

  1.  

    1. Shevchenko V.V., Tkachenko I.M., Shekera O.V. Nucleus-fluorinated aromatic polyethers. Polymer Sci. B., 2010, 52, no. 7–8: 408 430.
    https://doi.org/10.1134/S1560090410070055
     
    2. Dhara M.G., Banerjee S. Fluorinated high-performance polymers: poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog. Polym. Sci., 2010, 35, no. 8: 1022 1077.
    https://doi.org/10.1016/j.progpolymsci.2010.04.003
     
    3. Wan Y., Zhang Y., Shi Z., Xu W., Zhang X., Zhao L., Cui Z. Direct UV-written highly fluorinated aromatic-aliphatic copolyethers for optical waveguides. Polymer, 2012, 53, no. 8: 967 975.
    https://doi.org/10.1016/j.polymer.2011.12.021
     
    4. Hajdok I., Atanasov V., Kerres J. Perfluoro-p-xylene as a new unique monomer for highly stable arylene main-chain ionomers applicable to low-T and high-T fuel cell membranes. Polymers, 2015, 7, no. 6: 1066-1087.
    https://doi.org/10.3390/polym7061066
     
    5. Tkachenko I., Purikova O., Bliznyuk V., Shekera O., Shevchenko V. Synthesis and properties of novel fluorinated poly(arylene ether)s. Polym Int., 2015, 64, no. 9: 1104-1110.
    https://doi.org/10.1002/pi.4872
     
    6. Lara-Estevez J.I., Camacho-Zuniga C., Ruiz-Trevino F.A., Bucio E., Cassidy P.E., Booth C.J. Gas transport properties of some fluorine-containing polyethers. Ind. Eng. Chem. Res., 2010, 49, no. 23: 11948-11953.
    https://doi.org/10.1021/ie100249j
     
    7. Kobzar Y.L., Tkachenko I.M., Bliznyuk V.N., Sheke- ra O.V., Turiv T.M., Soroka P.V., Nazarenko V.G., Shevchenko, V.V. Synthesis and characterization of fluorinated poly (azomethine ether) s from new core-fluorinated azomethine-containing monomers. Des. Monomers Polym., 2016, 19, no. 1: 1-11.
    https://doi.org/10.1080/15685551.2015.1092007
     
    8. Maier G. Low dielectric constant polymers for microelectronics. Prog. Polym. Sci., 2001, 26, no. 1: 3-65.
    https://doi.org/10.1016/S0079-6700(00)00043-5
     
    9. Maex K., Baklanov M.R., Shamiryan D., Brongers- ma S.H., Yanovitskaya Z S. Low dielectric constant materials for microelectronics. J. Appl. Phys., 2003, 93, no. 11: 8793-8841.
    https://doi.org/10.1063/1.1567460
     
    10. Morgen M., Ryan E.T., Zhao J.H., Hu C., Cho T., Ho P.S. Low dielectric constant materials for ULSI interconnects. Annu. Rev. Mater. Sci., 2000, 30, no. 1: 645-680.
    https://doi.org/10.1146/annurev.matsci.30.1.645
     
    11. Cheng L., Han K., Xu K., Gadinski M.R., Wang Q. Modular synthesis and dielectric properties of high-performance fluorinated poly(arylene ether-1,3,4-oxadiazole)s. Polym. Chem., 2013, 4, no. 8: 2436-2439.
    https://doi.org/10.1039/c3py00174a
     
    12. Long T.M., Swager T.M. Molecular Design of Free Volume as a Route to Low-к Dielectric Materials. J. Am. Chem. Soc., 2003, 125, no. 46: 14113-14119.
    https://doi.org/10.1021/ja0360945
     
    13. Tkachenko I.M., Shekera O.V., Shevchenko V.V. Allyl-containing polyaryl ethers with perfluorinated mono- and biphenylene fragments. Polym. Sci. Ser. B., 2013, 55, no. 5-6: 336-343.
    https://doi.org/10.1134/S1560090413060080
     
    14. Saha S., Mistri E.A., Bera D., Banerjee S. Cardo fluorene based semifluorinated co-poly (arylene ether) s: Synthesis, characterization and dielectric properties. Mat. Chem. Phys., 2015, 152: 167-176.
    https://doi.org/10.1016/j.matchemphys.2014.12.028
     
    15 Shevchenko V.V., Tkachenko I.M., Gomza Yu.P., Bliznyuk V.N., Shekera O.V. Aromatic polyether containing perfluorinated mono- and biphenylene fragments in chain. Polym J., 2010, 32, no. 3: 243-250 (in Russian).
     
    16. Shevchenko V.V., Sidorenko A.V., Bliznyuk V.N., Tkachenko I.M., Shekera O.V. Smirnov N.N., Maslyanitsyn I.A., Shigorin V.D., Yakimansky A.V., Tsukruk V.V. Synthesis and properties of hydroxylated core-fluorinated diamines and polyurethanes based on them with azobenzene nonlinear optical chromophores in the backbone. Polymer, 2013, 54, no. 24: 6516-6525.
    https://doi.org/10.1016/j.polymer.2013.09.053
     
    17. Lu Z., Shao P., Li J., Hua J., Qin J., Qin A., Ye C. Two novel fluorinated poly (arylene ether) s with pendant chromophores for second-order nonlinear optical application. Macromolecules, 2004, 37, no. 19, 7089–7096.
    https://doi.org/10.1021/ma048889h
     
    18. Kameneva T.M., Malichenko B.F., Shelud’ko E.V., Pogorelyi V.K., Sherstyuk A.I., Rozhenko A.B. Bisphenols based on hexafluorobenzene and decafluorobiphenyl. Zh. Org. Khim., 1989, 25: 576-582 (in Russian).
     
    19. Tkachenko I.M., Purikova O.G., Shekera O.V., Shevchenko V.V. New acetyl-containing aromatic polyether with perfluorinated mono- and biphenylene fragments. Mendeleev Commun., 26: 77-78.
    https://doi.org/10.1016/j.mencom.2016.01.030
     
    20. Liang T., Neumann C.N., Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed., 2013, 52, no. 32: 8214-8264.
    https://doi.org/10.1002/anie.201206566
     
    21. Pat. 5114780 USA, Int. CI5 B32B 9/00. Electronic articles containing a fluorinated poly (arylene ether) dielectric. F.W. Mercer, T.D. Goodman, A.N. Lau, L.P. Vo, R.C. Sovish. Raychem Corporation. Publ. 19.05.1992.
     
    22. Pat. 5115082 USA, Int. CI5 C08G 65/40. Fluorinated poly (arylene ether)..W. Mercer, R.C. Sovish. Raychem Corporation. Publ. 19.05.1992.
     
    23. Danyliv O., Iojoiu C., Lyonnard S., Sergent N., Pla-nes E., Sanchez, J.Y. Highly phase separated aromatic ionomers bearing perfluorosulfonic acids by bottom-up synthesis: effect of cation on membrane morphology and functional properties. Macromolecules, 2016, 49, no. 11: 4164-4177.
    https://doi.org/10.1021/acs.macromol.6b00629