2016 (1) 10
https://doi.org/10.15407/polymerj.38.01.076
β-Cyclodextrin-containing polymer systems with controlled release of drugs
L.A. Orel, L.V. Kobrina, S.I. Sinelnikov, S.V. Riabov
Institute of Macromolecular Chemistry NAS of Ukraine
48, Kharkivske shose, Kyiv, 02160, Ukraine
Polym. J., 2016, 38, no. 1: 76-80.
Section: Medical polymers.
Language: Ukrainian.
Abstract:
In the work presented, the kinetics of desorption a most ubiquitous drugs (loratadine, diclofenac sodium, metoprolol succinate) from cyclodextrin-containing polymeric matrices is studied and the effect of functionalized β-CD on the rate of desorption is established. It is found, that incorporation of β-CD derivatives into polymer system changes a character of interaction between drug and polymer, allowing to influence the drug release mechanism. It is shown, that increase the degree of cross-linking of the polymer matrix to a certain level leads to enhancing of drugs desorption, but further increasing degree of cross-linking does not influence on drugs release. Incorporating of the β-CD derivatives into polymer matrix results in slowing drugs desorption in 2–4 times. It is of interest for developing of a new drugs-polymer complexes with sustained release. Introduction of cyclodextrin derivatives in polymers can reduce the overall toxicity of drugs and stabilize them during storage.
Key words: polymeric matrices, b-CD derivatives, desorption, drugs.
Література
1. Платэ Н.А., Васильев В.Е. Физиологически активные полимеры. – М.: Химия, 1986. – 294 с.
2. Glangchai L.C., Caldorera-Moore M., Li Shi, Roy K. Nanoimprint lithography based fabrication of shapeespecific, enzymatically-triggered smart nanoparticles // J. Control.Release. – 2008. – 125. – P. 263–272.
3. Mundargi R.C., Babu V.R., Rangaswamy V. et al. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,LL lactideeco-glicolide) and its derivatives // Ibid. – 2008. – 125. – P. 193–209.
4. Di Benedetto L.J., Huang J.S. Poly(alkylenetartrates) as controlled release agents // Polym. Degrad. Stability. – 1994. – 45. – P. 249–257.
5. De Scheerder I.K., Wilczek K.L., Verbeken E.V. et al. Biocompatibility of polymerrcoated over sized metallic stents implanted in normal porcine coronary arteries // Atherosclerosis. – 1995. – 114. – P. 105–114.
6. Li S., Perdy W.C. Cyclodextrins and their applications in analytical chemistry // Chem. Rev. – 1992. – 92. – P. 1457–1470.
7. Fromming K.H., Szejtly Cyclodextrins in pharmacy. – Kluwer Academic Publishers, 1994. – 228 p.
8. Uekama K., Hirayama F., Irie T. Cyclodextrin drug carrier systems// Chem. Rev. – 1998. – 5. – P. 2045–2076.
9. Szejtli J., Past, present, and future of cyclodextrin research // Pure Appl. Chem. – 2004. – 76. – P. 1825–1845.
10. Uekama K., Design and evaluation of cyclodextrin-based drug formulation // Chem. Pharm. Bull. – 2004. – 52. – P. 900–915.
11. Loftsson T., Jarho P., Mбsson M., Jarvinen T., Cyclodextrins in drug delivery // Expert Opin. Drug Deliv. – 2005. – 2. – P. 335–351.
12. Stella V.J., He Q., Cyclodextrins // Toxicol. Pathol. – 2008. – 36. – P. 30–42.
13. Otero-Espinar F., Torres-Labandeira J.J., Alvarez-Lorenzo C., Blanco-Mendez J., Cyclodextrins in drug delivery systems // J. Drug Deliv. Sci. Technol. – 2010. – 20. – P. 289–301.
14. Vyas A., Saraf S., Saraf S., Cyclodextrin based novel drug delivery systems // J. Incl. Phenom. Macrocycl. Chem. – 2008. – 62. – P. 23–42.
15. Liu Y.Y., Fan X.D. Synthesis, properties and controlled release behaviors of hydrogels networks using cyclodextrin as pendant groups // Biomaterials. – 2005. – 26. – P. 6367–6374.
16. Bajpai A.K., Shukla S.K., Bhanu S., Kankane S. Responsive polymers in controlled drug delivery // Progr. Polym. Sci. – 2008.– 33. – P. 1088–1118.
17. Ловягин А.Н. Универсальный фармацевтический справочник. – М.: ООО ПКФ “БАО”, 2004. – 608 с.
18. Опанасенко О.А., Рябов С.В., Сінельніков С.І. Синтез і властивості зшитих -циклодекстринвмісних кополімерів та їхня роль у фотокаталітичних процесах // Укр. хім. журн. – 2014. – 80, № 5-6. – С. 58-63.