2015 (4) 1
https://doi.org/10.15407/polymerj.37.04.330
Polymer hydrogels based on cyclodextrins as carriers for drugs: synthesis and physicochemical properties
L.A. Orel, S.V. Riabov, L.V. Kobrina, L.A. Goncharenko
Institute of Macromolecular Chemistry the NAS of Ukraine
48, Kharkivske shose, Kyiv, 02160, Ukraine
Polym. J., 2015, 37, no. 4: 330-340.
Section: Review.
Language: Ukrainian.
Abstract:
In a review article the problems of creating hydrogels as carriers for systems with controlled release of drugs were analyzed. Polymers, especially those intended for biomedical purposes, in particular for transport of drugs, must have high compatibility with biological tissues and the ability to biodegradation. The best for such requirements the systems based on natural polymers, in particular cyclodextrins suites. The development of advanced materials, new methods of synthesis allows to create unique polymer products, such as soft contact lenses with high gas permeability, bearing water-insoluble drugs, sorbents capable of absorbing both hydrophilic and hydrophobic substances, new membrane materials and other objects.
Key words: polymer hydrogels, cyclodextrins, inclusion complexes, drug, release kinetics.
Література
1. Alvarez Lorenzo C., Rosa dos Santos J.F., Sosnik A., Torres Labandeira J.J., Concheiro A. Hydrogels with cyclodextrins as highly versatile drug delivery systems. – In: Hanbook of Hydrogels: Properties, Preparation and Applications, D.B. Stein Ed. // Nova Science Publishers. – 2009. – P. 1-42.
2. Irie T., Uekama K. Pharmaceutical Applications of cyclodextrins-Toxicological issues and safety evaluation. // J. Pharm Sci. –1997. – 86. – P. 147-162.
3. Uekama K., Horiuchi Y., Kikuchi M., Hirayama F. Enhanced dissolution and oral bioavailability of -tocopheryl esters by dimethyl--cyclodextrin complexation. // J. Incl. Phenom. – 1988. – 6. – P. 167-174.
4. Loftsson T., Kristmundsdottir T. Microcapsules containing water- soluble cyclodextrin inclusion complexes of water-insoluble drugs. // ACS Sym. Ser. – 1993. – 520. – P. 168-189.
5. Wichterle O., Lim D. Hydrophilic gels for biological use. // Nature. – 1960. – 185. – P. 117-118.
6. Baker R.W., Tuttle M.E., Helwing R. Novel Erodible Polymers for the Delivery of Macromolecules. // Pharm.Technol. – 1984. – 8. – P. 26, 28, 30.
7. Kashyap N., Kumar N., Kumar M. Hydrogels for pharmaceutical and biomedical applications. // Crit. Rev. Ther. Drug Carr. Syst. – 2005. – 22. – P. 107-149.
8. Hoffman A.S. Hydrogels for biomedical applications. // Adv. Drug Deliv. Rev. – 2002. – 43. – P. 3-12.
9. Peppas N.A., Mikos A.G. Preparation methods and structure of hydrogels, in: N.A. Peppas (Ed.), Hydrogels in Medicine and Pharmacy. // CRC Press, Boca Raton, FL. – 1986. – Vol. 1. – P. 1-27.
10. Peppas N.A., Khare A.R. Preparation, structure and diffusional behavior of hydrogels in controlled release. // Adv. Drug Del. Rev. –1993. – 11. – P. 1-35.
11. Flory P.J., Rehner J. Statistical mechanics of cross-linked polymer networks. II. Swelling. // J. Chem. Phys. – 1943. – 11. – P. 521-526.
12. Flory P.J. Statistical mechanics of swelling of network structures. // J. Chem. Phys. – 1950. – 18. – P. 108-111.
13. Peppas N.A. Hydrogels of poly(vinyl alcohol) and its copolymers, in: N.A. Peppas (Ed.), Hydrogels in Medicine and Pharmacy. // CRC Press, Boca Raton, FL. – 1986. –Vol. 2. – P. 1-48.
14. Stauffer S.R., Peppas N.A. Poly(vinyl alcohol) hydrogels prepared by freezing–thawing cyclic processing. // Polymer.– 1992. – 33. – P. 3932-3936.
15. Mehrdad Hamidi, Amir Azadi, Pedram Rafiei. Hydrogel nanoparticles in drug delivery. // Advanced Drug Delivery Reviews. – 2008. – 60. – P. 1638-1649.
16. Coviello T., Matricardi P., Marianecci C., Alhaique F. Polysaccharide hydrogels for modified release formulations. // J. Control. Release. – 2007. – 119. – P. 5-24.
17. Lin C.C., Metters A.T. Hydrogels in controlled release formulations: network design and mathematical modeling. // Adv. Drug Deliv. Rev. – 2006. – 58. – P. 1379-1408.
18. Peppas N.A., Bures P., Leobandung W., Ichikawa H. Hydrogels in pharmaceutical formulations. // Eur. J. Pharm. Biopharm. – 2000. – 50. – P. 27-46.
19. Hennink W.E., van Nostrum C.F. Novel crosslinking methods to design hydro gels. // Adv. Drug Deliv. Rev. – 2002. – 54. – P. 13-36.
20. Hakkarainen B., Fujita K., Immel S., Kenne L., Sandstrom C. 1H-NMR studies on the hydrogen-bonding network in mono-altro--cyclodextrin and its complex with adamantane-1-carboxylic acid. // Carbohydr Res. – 2005. – 340. – P. 1539-1545.
21. Alvarez Lorenzo C., Rosa dos Santos J.F., Sosnik A., Torres Labandeira J.J., Concheiro A. Hydrogels with cyclodextrins as highly versatile drug delivery systems. – In: Hanbook of Hydrogels: Properties, Preparation & Applications, D.B. Stein Ed., Nova Science Publishers. – New York, 2009. – P. 1-42.
22. Bibby D.C., Davies N.M., Tucker I.G. Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. // Int. J. Pharm. – 2000. – 197. – P. 1-11.
23. Babu R.J., Dayal P., Singh M. Effect of cyclodextrins on the complexation and nasal permeation of melatonin. // Drug Deliv. – 2008. – 15. – P. 381-388.
24. Garcia-Gonzalez N., Kellaway I.W., Blanco-Fuente H., Anguiano-Igea S., Delgado-Charro B., Otero-Espi- nar F.J., Blanco-Mendez J. Influence of -cyclodextrin concentration and polyacrylic acid molecular weight on swelling and release characteristics of metoclopramide-containing hydrogels. // Int. J. Pharm. – 1993. –100. – P. 25-31.
25. Tonelli A.E. Nanostructuring and functionalizing polymers with cyclodextrins. // Polymer. – 2008. – 49. – P. 1725-1736.
26. Nogueiras-Nieto L., Alvarez-Lorenzo C., Sandez-Macho I., Concheiro A., Otero-Espinar F.J. Hydrosoluble cyclodextrin/ poloxamer polypseudorotaxanes at the air/water interface, in bulk solution, and in the gel state. // J. Phys. Chem. B. – 2009. – 113. – P. 2773-2782.
27. Rodriguez-Tenreiro C., Alvarez-Lorenzo C., Rodriguez-Perez A., Concheiro A., Torres-Labandei- ra J.J. Estradiol sustained release from high affinity cyclodextrin hydrogels. // Eur. J. Pharm. Biopharm. – 2007. – 66. – P. 55-62.
28. Loftsson T. and Duchene D. Historical perspective. Cyclodextrins and their pharmaceutical applications. // Int. J. Pharm. – 2007. – 329. – P. 1-11.
29. Derakhshandeh K., Erfan M., Dadashzadeh S. Encapsulation of 9- nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: factorial design, characterization and release kinetics. // Eur. J. Pharm. Biopharm. – 2007. – 66(1). – P. 34-41.
30. Kumar P.S., et al. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. // Pharmazie. – 2006. – 61(7). – P. 613-617.
31. Budhian A., Siegel S.J., Winey K.I. Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. // J. Microencapsul. – 2005. – 22(7). – P. 773-785.
32. Mittal G., et al. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. // J. Control. Release. – 2007. – 119(1). – P. 77-85.
33. Atherden L.M. Studies with glycyrrhetic acid; inhibition of metabolism of steroids in vitro. // Biochem. J. – 1958. – 69(1). – P. 75-78.
34. Sarmento B., et al. Alginate/chitosan nanoparticles are effective for oral insulin delivery. // Pharm. Res. – 2007. – 24(12). – P. 2198-2206.
35. De Campos A.M., Sanchez A., Alonso M.J. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. // Int. J. Pharm. – 2001. – 224(1–2). – P. 159-168.
36. Bajpai A.K., Choubey J. Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate. // J. Mater. Sci. Mater. Med. – 2006. – 17(4). – P. 345-358.
37. Guo J.H., Cooklock K.M. Bioadhesive polymer buccal patches for buprenorphine controlled delivery: solubility consideration. // Drug. Dev. Ind. Pharm. – 1995. – 21. – P. 2013-2019.
38. Samy E.M., Safwat S.M. In vitro release of anti-inflammatory drugs with -cyclodextrin from hydrophilic gel bases. // STP Pharma. Sci. – 1994. – 4. – P. 458-465.
39. Villar-Lopez M.E., Nieto-Reyes L., Anguiano-Igea S., Otero- Espinar F.J., Blanco-Mendez J. Formulation of triamcinolone acetonide pellets suitable for coating and colon targeting. // Int. J. Pharm. – 1999. – 179. – P. 229-235.
40. Giunchedi P., Maggi L., La Manna A., Conte U. Modification of the dissolution behaviour of a water-insoluble drug, naftazone, for zero-order release matrix preparation. – 1994.
41. Song C.X., Labhasetwar V., Levy R.J. Controlled release of U-86983 from double-layer biodegradable matrices: effect of additives on release mechanism and kinetics. // J. Pharm. Pharmacol. – 1997. – 46. – P. 476-480.
42. Davies N.M., Bary A.R., Tucker I.G. Use of a poorly soluble complex of pilocarpine with -cyclodextrin to control release from ophthalmic inserts. Proceedings of the International Symposium on the Controlled Release of Bioactive Material. // Kyoto. –1996. – 23. –P. 719-720.
43. Szejtli J. Cyclodextrin Technology. – Kluwer Academic, Dordrecht, 1988.
44. Sreenivasan K. On the restriction of the release of water-soluble component from polyvinyl alcohol film by blending b-cyclodextrin. // J. Appl. Polym. Sci. – 1997. – 65. – P. 1829-1832.
45. Filipovic-Grcic J., Becirevic-Lacan M., Skalko N., Jalsenjak I. Chitosan microspheres of nifedipine and nifedipinecyclodextrin inclusion complexes. // Int. J. Pharm. – 1996. – 135. – P. 183-190.
46. Marzouqi A.H.A., Shehatta I., Jobe B. and Dowai- dar A. Phase solubility and inclusion complex of Itraconazole with -cyclodextrin using supercritical carbon dioxide. // J. Pharm. Sci. – 2006. – 95(2). – P. 292-304.
47. Wang L., Jiang X., Xu W. and Li C. Complexation of Tanshinone IIA with 2-hydroxypropyl--cyclodextrin: Effect on aqueous solubility, dissolution rate, and intestinal absorption behavior in rats. // Int. J. Pharm. – 2007. – 341(1-2). – P. 58-67.
48. Marques H.M.C., Hadgraft J. and Kellaway I.W. Studies of cyclodextrin inclusion complexes. I. The Salbutamol-cyclodextrin complex as studied by phase solubility and DSC. // Int. J. Pharm. – 1990. – 63(3). – P. 259-266.
49. Tayade P.T. and Vavia P.R. Inclusion complexes of Ketoprofen with в cyclodextrins: Oral pharmacokinetics of Ketoprofen in human. // Indian J. Pharm. Sci. – 2006. – 68(2). – P. 164-170.
50. Maestrelli F., Rodriguez M.L.G., Rabasco A.M. and Mura P. Preparation and characterisation of liposomes encapsulating Ketoprofen–cyclodextrin complexes for transdermal drug delivery. // Int. J. Pharm. – 2005. – 298(1). – P. 55-67.
51. Sinha V.R., Anitha R., Ghosh S., Nanda A. and Kumria R. Complexation of Celecoxib with -cyclodextrin: Characterization of the interaction in solution and in solid state. // J. Pharm. Sci. – 2005. – 94(3). – P. 676-687.
52. Rao B.P., Sarasija S. and Narendra C. Physicochemical characterization of Hydroxypropyl--cyclodextrin complexes of Rifampicin for improved anti-tubercular activity and stability. // Indian Drugs. – 2006. – 43(8). – P. 679-682.
53. Scalia S., Tursilli R., Sala N. and Iannuccelli V. Encapsulation in lipospheres of the complex between butyl methoxydibenzoylmethane and hydroxypropyl--cyclodextrin. // Int. J. Pharm. – 2006. – 320(1-2). – P. 79-85.
54. Baboota S., Dhaliwal M., Kohli K. and Ali J. Inclusion complexation of Rofecoxib with dimethyl Beta-cyclodextrin. // Indian J. Pharm. Sci. – 2005. – 67(2). – P. 226-229.
55. Manosroi J., Apriyani M.G., Foe K. and Manosroi A. Enhancement of the release of Azelaic acid through the synthetic membranes by inclusion complex formation with hydroxypropyl--cyclodextrin. // Int. J. Pharm. – 2005. – 293(1-2). – P. 235-240.
56. Duchene D., Vaution C. and Glomot F. Cyclodextrin, Their Value in pharmaceutical Technology. // Drug Dev. Ind. Pharm. –1988. – 12(11-13). – P. 2193-2215.
57. Hassan M.A., Suleiman M.S. and Najib N.M. Improvement of the in vitro dissolution characteristics of Famotidine by inclusion in -cyclodextrin. // Int. J. Pharm. – 1989. – 58(1). – P. 19-24.
58. Erden N. and Celebi N. A study of the inclusion complex of Naproxen with -cyclodextrin. // Int. J. Pharm. – 1988. – 48(1-3). – P. 83-89.
59. Jadhav G.S. and Vavia P.R. Physicochemical, in silico and in vivo evaluation of a Danazol–-cyclodextrin complex. // Int. J. Pharm. – 2008. – 352(1-2). – P. 5-16.
60. Bencini M., Ranucci E., Ferruti P., Trotta F., Donali-sio E., Cornagilia M., Lembo D. and Cavalli R. Preparation and in vitro evaluation of the antiviral activity of the Acyclovir complex of a -cyclodextrin/poly(amidoamine) copolymer. // J. Controlled Release. – 2008. – 126(1). – P. 17-25.
61. Erden N. and Celebi N. A study of the inclusion complex of Naproxen with -cyclodextrin. // Int. J. Pharm. – 1988. – 48(1-3). – P. 83-89.
62. Chun I.K. and Yun D.S. Inclusion complexation of Hydrocortisone butyrate with cyclodextrins and dimethyl--cyclodextrin in aqueous solution and in solid state. // Int. J. Pharm. –1993. – 96(1-3). – P. 91-103.
63. Otero-Esppinar F.J., Igea A.N., Gonzalez N.G., Jato V.J.L. and Mendez J.B. Interaction of Naproxen with -cyclodextrin in solution and in the solid state. // Int. J. Pharm. – 1992. – 79(2). – P. 149-157.
64. Lin S.Y. and Kao Y.H. Solid particulates of drug--cyclodextrin inclusion complexes directly prepared by a spray-drying technique. // Int. J. Pharm. – 1989. – 56(3). – P. 249-259.
65. Bekers O., Uijtendaal E.V., Beijnen J.H., Bult A. and Underberg W.J.M. Cyclodextrins in the pharmaceutical field. // Drug Dev. Ind. Pharm. – 1991. –17(11). – P. 1503-1549.
66. Aithal K.S., Udupa N. and Sreenivassan K.K. Physicochemical properties of drug-cyclodextrin complexes. // Indian Drugs. – 1995. – 32(7). – P. 293-305.
67. Doijad R.C., Kanakal M.M. and Manvi F.V. Effect of processing variables on dissolution and solubility of Piroxicam: Hydroxypropyl--cyclodextrin inclusion complexes. // Indian J. Pharm. Sci. – 2007. – 69(2). – P. 323-326.
68. Tomren M.A., Masson M., Loftsson T. and Tonne- sen H.H. Studies on curcumin and curcuminoids XXXI. Symmetric and asymmetric curcuminoids: Stability, activity and complexation with cyclodextrin. // Int. J. Pharm. – 2007. – 338(1-2). – P. 27-34.
69. RiBeiro L.S.S., Falcao A.C., Patricio J.A.B., Ferrei- ra D.C. and Veiga. F.J.B. Cyclodextrin multicomponent complexation and controlled release delivery strategies to optimize the oral bioavailability of Vinpocetine. // J. Pharm. Sci. – 2007. – 96(8). – P. 2018-2028.
70. Lin S.Z., Wouessidjewe D., Poelman M. and Duche- ne D. Indomethacin and cyclodextrin complexes. // Int. J. Pharm. – 1991. – 69(3). – P. 211-219.
71. Tenjarla S., Puranajoti P., Kasina R. and Mandal T. Preparation, characterization and evaluation of Miconazole-Cyclodextrin complexes for improved oral and topical delivery. // J. Pharm. Sci. – 1998. – 87(4). – P. 425-429.
72. Uekama K., Fujinaga T., Hirayama F., Otagiri M., Yamasali M., Seo H., Hasimoto T. and Tsuruoka T. Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation. // J. Pharm. Sci. – 1983. – 72(11). – P. 1338-1341.
73. Smulevich G., Feis A., Mazzi G. and Vincieri F.F. Inclusion complex formation of 1,8-dihydroxyanthraquinone with cyclodextrins in aqueous solution and in solid state. // J. Pharm. Sci. – 1988. – 77(6). – P. 523-526.
74. Xiang T.X. and Andersoon B.D. Inclusion complexes of purine nucleosides with cyclodextrins: II. Investigation of inclusion complex geometry and cavity microenvironment. // Int. J. Pharm. – 1990. – 59(1). – P. 45-55.
75. Martinez A.G., Montoro T., Vinas M.H. and Tarda- jos G. Complexation and chiral drug recognition of an amphiphilic phenothiazine derivative with -cyclodextrin. // J. Pharm. Sci. – 2008. – 97(4). – P. 1484-1498.
76. Uekama K., Hirayama F., Otagiri M. and Yamasa- ki M. Inclusion complexations of steroid hormones with cyclodextrins in water and in solid phase. // Int. J. Pharm. – 1982. – 10(1). – P. 1-15.
77. Beni S., Szakacs Z., Csernak O., Barcza L. and Nos- zal B. Cyclodextrin/Imatinib complexation: Binding mode and charge dependent stabilities. // Eur. J. Pharm. Sci. – 2007. – 30(2). – P. 167-174.