2014 (4) 2

Effect of epoxyfunctionalized POSS on chemical structure and viscoelastic properties of polycyanurate based nanocomposites

 

О.P. Grigoryeva1, О.N. Starostenko1, K.G. Gusakova1, А.М. Fainleib1, J.M. Saiter2, B. Youssef 2,3, D. Grande4 

 

1Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, 02160 Kyiv, Ukraine

2AMME-LECAP International Lab EA 4528 Universite de Rouen

76801 St. Et. du Rouvray, France

3 INSA de Rouen, BP 08 Av. de l’Universite

76801, Saint Etienne du Rouvray, France

4 Institut de Chimie et des Materiaux Paris-Est, UMR 7182 CNRS – Universite Paris Est Val-de-Marne

94320, 2-8, rue Henri Dunant, Thiais, France

 

Polym. J., 2014, 36, no. 4: 341-351.

 

Section: Structure and properties.

 

Language: Russian.

 

Abstract:

Organic-inorganic nanocomposites based on thermostable polycyanurate networks (PCNs) and epoxy functionalized polyhedral oligomeric silsesquioxanes (POSS) with different content of epoxy groups were synthesized by the in situ reactive forming and characterized. The chemistry and kinetics of the DCBE/epoxy POSS blends curing process was monitored using FTIR spectroscopy technique. It was found that the polycyclotrimerization of the DCBE leading to PCN formation took place along with a co-reaction between cyanate groups of DCBE and epoxy groups of ECH-POSS resulting to oxazolidinone cycle formation. Catalytic effect of epoxy-POSS on polycyclotrimerization reaction of DCBE has been found. It has been established that velocity of cyanurate cycles formation as well as final cyanate groups conversion depend on content of reactive groups in epoxy-POSS. Influence of the nanofiller content and type on viscoelastic properties and microphase structure of the nanocomposites prepared has been studied using dynamical mechanical thermal analysis (DMTA). It is shown that loading 2-10 wt.% of epoxy-POSS into PCN leads to formation of hybrid fragments in PC/epoxy-POSS network inducing some disordering of PC-matrix network structure and enhancing chain segments mobility. Therewith, the values of glass transition apparent activation energy and glass transition temperatures have been decreased.  A significant increase of elastic modulus value for nanocomposites containing 2 and 5 wt.% of epoxy-POSS has been fixed.

 

Keywords: in situ reactive forming, polymer nanocomposites, epoxy-functionalized POSS, viscoelastic properties, activation energy.

 

Литература

 

1. Kickelbick G. // Progr. Polym. Sci. – 2003. – 28, N 1. – P. 83-114.
2. Frye C.L., Collins W.T. // J. Americ. Chem. Soc. – 1970. – 92, N 19. – Р. 5586-5588.
3. Liu Y., Zheng S., Nie K. // Polymer. – 2005. – 46, N 25. – P. 12016-12025.
4. Liu H., Zhang W., Zheng S. // Polymer. – 2005. – 46, N 1. – P. 157-165.
5. Choi J., Yee A.F., Laine R.M. // Macromolecules. – 2003. – 36, N 15. – P. 5666-5682.
6. Joshi M., Butola B.S. // J. Macromol. Sci. Part C., Polym. Rev. – 2004. – 44, N 4. – P. 389-410.
7. Abe Y., Gunji T. // Progr. Polym. Sci. – 2004. – 29. – P. 149-182.
8. Терещенко Т.А., Шевчук А.В., Шевченко В.В. // Полімер. журн. – 2005. – 27, №1. – С. 3-12.
9. Bliznyuk V.N., Tereshchenko T.A., Gumenna M.A., Gomza Yu P., Shevchuk A.V., Klimenko N.S., Shevchen-ko V.V. // Рolymer. – 2008. – 49, N 9. – P. 2298-2305.
10. Гомза Ю.П., Близнюк В.Н., Гуменная М.А., Шев- чук А.В., Клименко Н.С., Шевченко В.В. // Доп. НАН України. – 2008. – № 10. – С. 142-145.
11. Phillipps S.H., Haddad T.S., Tomczak S.J. // Current opinion in solid state and materials science. – 2004. – 8, N 1. – P. 21 – 29.
12. Zhang H., Kulkarni S., Wunder S.L. // J. Electrochem. Soc. – 2006. – 153, N 2. – P. A239-A248.
13. He F-A., Zhang L-M. // Nanotechnology. – 2006. – 17, N 24. – P. 5941-5946.
14. Hosaka N., Torikai N., Otsuka H. // Langmuir. – 2007. – 23, N 2. – P. 902-907.
15. Kannan R.Y., Salacinski H.J., De Groot J. // Biomacromolecules. – 2006. – 7, N 1. – P. 215-22.
16. Thermostable polycyanurates: synthesis, modification, structure and properties / A. Fainleib (Ed.). – New York: Nova Science Publishers, 2011. – ISBN-13: 9781608769070.
17. Liang K., Li G., Toghiani H., Koo J.H., Pittman C.U. // Chem. Mater. – 2006. – 18, N 2. – Р. 301-312.
18. Cho H.-S., Liang K., Chatterjee S., Pittman C.U. // J. Inorg. Organometal. Polym. Mater. – 2005. – 15, N 4. – P. 541-553.
19. Kourkoutsaki Th., Logakis E., Kroutilova I., Matej-ka L., Nedbal J., Pissis P. // J. Appl. Polym. Sci. – 2009. – 113, N 4. – P. 2569-2582.
20. Zhang Z., Liang G., Wang X. // Polym. Int. – 2014. – 63, N 3. – Р. 552-559.
21. Lu T., Liang G., Guo Z. // J. Appl. Polym. Sci. – 2006. – 101. – Р. 3652-3658.
22. Pittman C., G.-Z. Li, Ni H. // Macromol. Symp. – 2003. – 196. – P. 301-325.
23. Starostenko O., Bershtein V., Fainleib A., Egorova L., Grigoryeva O., Sinani A., Yakushev P. // Macromol. Symp. – 2012. – 316. – P. 90-96.
24. Nakanishi K. Infrared Absorption Spectroscopy: Practical. – San Francisco: Holden-Day Inc., 1962. – 233 c.
25. Файнлейб А.М., Шанталий Т.А., Сергеева Л.М. // Пласт. массы. – 1995. – № 1.– С. 16-18.
26. Коршак В., Панкратов В., Комарова Л., Френ- кель Ц., Файнлейб А., Виноградова С. // Известия АН СССР, Химия. – 1983. – № 10. – С. 2369-2373.
27. Semenovych H.M., Fainleib O.M., Slinchenko O.A., Brovko O.O., Sergeeva L.M., Dubkova V.I. // React. Funct. Polym. – 1999. – 40. – P. 281-288.
28. Пат. 53555 Україна, МКВ7 C08G, 73/00. Спосіб отримання поліціанурату / О.М. Файнлейб, О.П. Григор’єва, О.М. Старостенко, Б. Юссеф, Ж.-М. Сатер, Д. Гранде. – Опубл. 11.10.2010. – Бюл. № 19.
29. Li G., Lee-Sullivan P., Thring R.W. // J. Therm. Anal. &Calorim. – 2000. – 60. – P. 377-390.
30. Старостенко О.Н., Григорьева О.П., Файн- лейб А.М., Saiter J.M., Youssef B., Grande D. // Полімер. журн. – 2014. – 36, № 3. – С. 233-244.