2014 (4) 11

In situ synthesis of silver nanoparticles into polyelectrolyte polymer matrices using hydrogen as reducing agent

 

N.V. Kutsevol, N.P. Мelnyk. М.A. Chumachenko

 

Taras Shevchenko National University, Department of Chemistry

60, Volodymyrska str., Kyiv, 01033, Ukraine

 

Polym. J., 2014, 36, no. 4: 413-417.

 

Section: Synthesis polymers.

 

Language: Ukrainian.

 

Abstract:

The effect of temperature, pH medium on the size distribution and stability of silver hydrosols synthesized in situ into polymer matrices with various molecular structure where hydrogen was used as reductant has been researched. It was shown that the nanoparticles size distribution and sol stability can be controlled by varying the synthesis condition. It was proved that the nucleation process depends on the chemical nature of functional groups in polymer chain where the dispersion of silver ions occurs with their further regeneration.

The nanosystems obtained at pH=2 were the most monodisperse with the metal nanoparticle of 20 nm, whereas all functional groups of polymer matrices (СООН and СОNH2) at this pH are non-ionized.

The most polydisperse nanosystems both in size (20–160 nm) and shape (spherical and star-like metalparticles) were synthesized at pH=12, when all functional groups of polymer chain are completely ionized. It was established that the macromolecule structure of the polymer molecule affects the growth and stabilization of sivler nanoparticles. The stable Ag sols were obtained at different pH and temperature only in the branched star-like matrices.

 

Key words: polyacrylamide, dextran, branched polymer, polyelectrolyte, structure, nanoparticle, silver sol.

 

Література

 

1. Сhoi S., Dickson R.M. // Chem. Soc. Rev. – 2012. – 41. – P. 1867-1891.
2. Guzman M.G., Dille J., Godet S. // Int. J. Chem. Biol. Eng. – 2009. – 2, N 3. – P. 104 -111.
3. Panacek A. L., Kvіtek R., Prucek M., Sharma V.K., Nevecna T., A. Panacek // J. Am. Chem. Soc. – 2006. – 26, N16. – P. 37–43.
4. Сергеев Б.М., Кирюхин М.В., Бахов Ф.Н,. Бахов В.Г., Сергeeв В.Г. // Вестн. Моск. ун-та. Сер. 2. Химия. – 2001. – 42, № 5. – С. 308-314.
5. Henglein A., Giersig M. // J. Phys. Chem. Part B. – 1999. – 103. – Р. 9533–9539.
6. Jiguang Zhang, Shengqing Xu, Eugenia Kumacheva // Adv. Matter. – 2005. – 17. – Р. 2336-2340.
7. Bezuglyi M., Kutsevol N., Rawiso M, Bezugla T. // Chemik. – 2012. – 66, № 8. – P. 862-867.
8. Kutsevol N., Bezugla T., Bezuglyi M., Rawiso M. // Macromol. Symp. – 2012. – 317-318, N. 1. – P. 82-90.
9. Куцевол Н.В., Безуглий М.Ю., Колендо О.Ю., Мельник Н.П. // Полімер. журн. – 2010. – 32, № 2. – С. 158-165.
10. Эскин В.Е. Рассеяние света растворами полимеров и свойства макромолекул. – М.: Химия, 1990. – 256 с.
11. Рафиков С.Р., Будтов В.П., Монаков Ю.Б. Введение в физико-химию растворов полимеров. – М.: Наука, 1978. – 328 с.
12. Kutsevol N., Bezuglyi M., Bezugla T., Rawiso M. // Mol. Cryst. Liq. Cryst. – 2014. – 590, № 1. – Р. 179-185.
13. Chumachenko V., Kutsevol N., Rawiso M., Schmutz M., Blanck C. // Nanoscale Research Letters. – 2014. – 9. – P. 164.