2018 (4) 5

https://doi.org/10.15407/polymerj.40.04.254

Oligomeric silsesquioxanes containing azobenzene chromophore fragments in an organic frame based on a mixture of silsesquioxanes with epoxy groups

 

M.A. Gumenna1 , N.S. Klimenko1 , A.V. Stryutsky1, О.О. Sobko1, A.V. Shevchuk2, V.V. Kravchenko2, А.V. Kravchenko2, V.V. Shevchenko1 

 

1 Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivs’ke shose, Kyiv, 02160, Ukraine

2 L.M. Litvinenko Institute of Physical-organic Chemistry and Coal Chemistry NAS of Ukraine

50, Kharkivs’ke shose, Kyiv, 02160, Ukraine

 

Polym. J., 2018, 40, no. 4: 254-262.

 

Section: Synthesis polymers.

 

Language: Russian.

 

Abstract:

 

A method for the synthesis of chromophore-containing amphiphilic reactive oligomeric silsesquioxanes, based on the reaction between the epoxy groups of silsesquioxane and the hydroxyl groups of azo dyes 4- (phenylazo) phenol or 4- [4- (phenylazo) phenylazo] -o-cresol, was proposed. A characteristic feature of such dyes is their ability to photoisomerization – reversible transitions from a more stable trans form to a less stable cis form when exposed to light of a certain wavelength. The structure of the synthesized substances was characterized by the methods of IR and 1H NMR spectroscopy. The optical properties of the initial mixture of oligomeric silsesquioxanes and synthesized substances were investigated by the method of UV-Vis spectroscopy using DMF as a solvent. An oligomer containing 4- (phenylazo) phenol fragments is characterized by absorption with a strong band corresponding to the pp* transition at 354 nm and a weaker band corresponding to the n – p* transition at 470 nm. In the UV-Vis spectrum of an oligomer containing fragments of 4- [4- (phenylazo) phenylazo] -o-cresol, an absorption maximum at 390 nm corresponding to the pp* transition is observed. In this case, the n-p* transition is observed as the shoulder of the main peak at approximately 480 nm. The obtained results indicate that the addition of the described azo dyes to the silsesquioxane core does not significantly affect the optical properties of chromophores. At the same time, the presence of reactive groups in the organic frame opens up the possibility of obtaining, on their basis, polymers capable of photoisomerization with covalent binding of the chromophores.

 

Keywords: oligomeric silsesquioxanes, functionalization, azo dyes, light absorption, photoisomerization.

References

1. Pielichowski K., Njuguna J., Janowski B., Pielichowski J. Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. Adv. Polym. Sci., 2006, 201: 225-296. https://doi.org/10.1007/12_077
2. Zhang W., Muller A.H.E. Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Progress in Polymer Science, 2013, 38, no. 8: 1121-1162. https://doi.org/10.1016/j.progpolymsci.2013.03.002
3. Zhou H., Ye Q., Xu J. Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater.Chem.Front, 2017, 1: 212-230. https://doi.org/10.1039/C6QM00062B
4. Tanaka K., Chujo Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J.Mater.Chem., 2012, 22: 1733-1746. https://doi.org/10.1039/C1JM14231C
5. Zhou Zh., Lu Zh.-R. Dendritic nanoglobules with polyhedral oligomeric silsesquioxane core and their biomedical applications. Nanomedicine (Lond.), 2014, 9, no. 15: 2387-2401. https://doi.org/10.2217/nnm.14.133
6. Froehlich J.D., Young R., Nakamura T., Ohmori Y., Li S., Mochizuki A., Lauters M., Jabbour G.E. Synthesis of multi-functional POSS emitters for OLED applications. Chem. Mater., 2007, 19: 4991-4997. https://doi.org/10.1021/cm070726v
7. Ledin P.A., Tkachenko I.M., Xu W., Choi I., Shevchenko V.V., Tsukruk V.V. Star-shaped molecules with polyhedral oligomeric silsesquioxane core and azobenzene dye arms. Langmuir, 2014, 30: 8856-8865. https://doi.org/10.1021/la501930e
8. Spoljaric S., Shanks R.A. Novel elastomer dye-functionalised POSS nanocomposites: Enhanced colourimetric, thermomechanical and thermal properties. eXPRESS Polymer Letters, 2012, 6, no. 5: 354–372. https://doi.org/10.3144/expresspolymlett.2012.39
9. Liras M., Pintado-Sierra, M.; Amat-Guerri, F.; Sastre R. New BODIPY chromophores bound to polyhedral oligomeric silsesquioxanes (POSS) with improved thermo- and photostability. J. Mater. Chem. 2011, 21: 12803–12811. https://doi.org/10.1039/c1jm11261a
10. Olivero F., Carniato F., Bisio C., Marchese L. A novel stable and efficient light-emitting solid based on saponite and luminescent POSS. J.Mater.Chem., 2012, 22: 25254-25261. https://doi.org/10.1039/c2jm34230h
11. Yan Z.Q., Xu H.Y., Guang S.Y., Zhao X., Fan W.L., Liu X.Y. A convenient organicinorganic hybrid approach toward highly stable squaraine dyes with reduced H-aggregation. Adv. Funct. Mater., 2012, 22, no. 2: 345-52. https://doi.org/10.1002/adfm.201101565
12. Perez-Ojeda M.E., Trastoy B., Lopez-Arbeloa I., Banuelos J., Costela A., Garcia-Moreno I., Chiara J.L. Click assembly of dye-functionalized octasilsesquioxanes for highly efficient and photostable photonic systems. Chem. Eur. J., 2011, 17: 13258-13268. https://doi.org/10.1002/chem.201100512
13. Cordes D.B., Lickiss P.D., Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev., 2010, 110, no. 4: 2081-2173. https://doi.org/10.1021/cr900201r
14. Sastre R., Martin V., Garrido L., Chiara J.L., Trastoy B., Garcia O., Costela A., Garcia-Moreno I. Dye-doped polyhedral oligomeric silsesquioxane (POSS)-modified polymeric matrices for highly efficient and photostable solid-state lasers. Adv. Funct. Mater., 2009, 19, no. 20: 3307-3316. https://doi.org/10.1002/adfm.200900976
15. Ke F., Wang S., Guang S., Liu Q., Xu H. Synthesis and properties of broad-band absorption POSS-based hybrids. Dyes and Pigments, 2015, 121: 199-203. https://doi.org/10.1016/j.dyepig.2015.05.024
16. Yang X., Froehlich J.D., Chae H.S., Li S., Mochizuki A., Jabbour G.E. Efficient light-emitting devices based on phosphorescent polyhedral oligomeric silsesquioxane materials. Adv. Funct. Mater., 2009, 19: 2623–2629. https://doi.org/10.1002/adfm.200900050
17. Olivero F., Reno F., Carniato F., Rizzi M., Cannas M., Marchese L. A novel luminescent bifunctional POSS as a molecular platform for biomedical applications. DaltonTrans, 2012, 41: 7467-7473. https://doi.org/10.1039/c2dt30218g
18. Cho H., Hwang D., Lee J., Jung Y., Park J., Lee J., Lee S., Shim H. Electroluminescent polyhedral oligomeric silsesquioxane-based nanoparticle. Chem. Mater., 2006, 18: 3780-3787. https://doi.org/10.1021/cm061011f
19. Miniewicz A., Girones J., Krpinski P., Mossety-Leszczak B., Galina H., Dutkiewicz M. Photochromic and nonlinear optical properties of azo-functionalized POSS nanoparticles dispersed in nematic liquid crystals. J.Mater.Chem.C., 2014, 2, no. 3: 432-440. https://doi.org/10.1039/C3TC31791A
20. Ledin P.A., Russell M., Geldmeier J.A., Tkachenko I.M., Mahmoud M.A., Shevchenko V., El-Sayed M.A., Tsukruk V.V. Light-responsive plasmonic arrays consisting of silver nanocubes and a photoisomerizable matrix. ACS Appl. Mater. Interfaces, 2015, 7: 4902-4912. https://doi.org/10.1021/am508993z
21. Gultek A. Synthesis and characterization of hybrid congo red from chloro-functionalized silsesquioxanes. Turk. J. Chem., 2010, 34: 437-445.
22. Chi H., Mya K.Y., Lin T., He C., Wang F.K., Chin W.S. Thermally stable azobenzene dyes through hybridization with POSS. NewJ.Chem., 2013, 37: 735-742. https://doi.org/10.1039/c2nj40977a
23. Wangatia L.M., Zeng T., Sun B., Zhu M. Synthesis of pyrrolidine substituted perylene imide end capped with POSS nanoparticle and a preliminary study of its electronic properties. Advanced Materials Research, 2013, 668: 701-705. https://doi.org/10.4028/www.scientific.net/AMR.668.701
24. Matejka L., Dukh O., Brus J., Simonsick W.J., Meissner B. Cage-like structure formation during sol-gel polymerization of glycidyloxypropyltrimethoxysilane. Journal of non-crystalline solids. 2000, 270, no. 1-3: 34-47. https://doi.org/10.1016/S0022-3093(00)00074-0
25. Williams R.J.J., Erra-Balsells R., Ishikava Y., Nonami H., Mauri A.N., Riccardi C.C. UV-MALDI-TOF and ESI-TOF mass spectrometry characterization of silsesquioxanes obtained by the hydrolytic condensation of (3-glycidoxypropyl)-trimethoxysilane in an epoxidized solvent. Macromolecular chemistry and physics, 2001, 202, no. 11: 2425-2433. https://doi.org/10.1002/1521-3935(20010701)202:11<2425::AID-MACP2425>3.0.CO;2-M
26. Matejka L., Murias P., Plestil J. Effect of POSS on thermomechanical properties of epoxy–POSS nanocomposites. Eur. Polym. J., 2012, 48: 260–274. https://doi.org/10.1016/j.eurpolymj.2011.11.009
27. Wang Y., Tsai H., Ji Z., Chen W. Controlling POSS dispersion in epoxy in nanocomposite by introducing multi-epoxy POSS groups. J. Mater. Sci., 2007, 42: 7611–7616. https://doi.org/10.1007/s10853-007-1845-x
28. Gunawidjaja R., Huang F., Gumenna M., Klimenko N., Nunnery G.A., Shevchenko V., Tannenbaum R., Tsukruk V.V. Bulk and surface assembly of branched amphiphilic polyhedral oligomer silsesquioxane compounds. Langmuir, 2009, 25, no. 2: 1196-1209. https://doi.org/10.1021/la803182n
Поступила в редакцию 23 октября 2018 г.