2018 (4) 7
https://doi.org/10.15407/polymerj.40.04.270
New Polyurethane Foams Based On Naturally Renewable Compounds Of Various Structures: A Study Of (Bio) Degradation
Yu.V. Saveliev, L.A. Markovskaya, E.R. Akhranovich, O.A. Savelyev, N.I. Parkhomenko, S.N. Ostapyuk
Institute of Macromolecular Chemistry NAS of Ukraine
48, Kharkivske shose, Kyiv, 02160, Ukraine
Polym. J., 2018, 40, no. 4: 270-276.
Section: Synthesis polymers.
Language: Ukrainian.
Abstract:
New environmentally friendly polyurethane foams (PUF) were synthesized with a high, up to 63 %, content of naturally renewable compounds – lactose disaccharide, castor oil, xanthan exopolysaccharide. Introduction to the structure of PUF natural compounds significantly accelerates the processes of degradation. For polymers containing in the structure of castor oil, the effect of (bio) determination is observed. With the introduction of xanthan exopolysaccharide into the PUF structure, a synergistic effect of both plant components on the nature of this process is noted, while the contribution of the latter is decisive and it is this which activates the (bio) degradation process. In PU-based lactose and castor oil, destruction occurs through the destruction of urea groups, and in PU-based castor oil and xanthan, the degradation of the macromolecule in urea groups is preceded by the destruction of weak chemical, hydrogen bonds. The process of (bio) degradation during the 6-month incubation in the ground in natural conditions occurs at a faster rate than in the model – up to 59 and 36 %, respectively. Under model conditions, the processes of degradation of polyurethane foam by hydrolysis prevail in a significant way, as a result of which amino compounds appear. In the ground, under more favorable conditions of vital activity of microorganisms (MO), enzymatic chemical transformations are activated and, mainly, PUR biodegradation occurs. This is evidenced by the appearance in the earth of a significant amount of organic acids as a result of the life activity of MO. Thus, a different degree of bio-, hydro-, thermo (light) load determines the nature of the degradation of polymeric materials.
Keywords: polyurethane foams, naturally renewable compounds, structure, properties, destruction, (bio)degradation.
References
1. Howard G. Biodegradation of polyurethane: a review. International Biodeterioration &Biodegradation., 2002, 49:245-252. https://doi.org/10.1016/S0964-8305(02)00051-3
2. Sivan A. New perspectives in plastic biodegradation. Current Opinion in Biotechnology., 2011, 22 (3): 422-426. https://doi.org/10.1016/j.copbio.2011.01.013
3. Buchholz K., Seibel J. Industrial carbohydrate biotransformation. Carbohydrate Research., 2008, no.343:1966-1979. https://doi.org/10.1016/j.carres.2008.02.007
4. Raquez J.-M., Deleglise M., Lacrampe M.-F., Krawczak P. Thermosetting (bio)materials derived from renewable resources: A critical review. Progress in Polym. Sci., 2010, 35(4): 487-509. https://doi.org/10.1016/j.progpolymsci.2010.01.001
5. Trakarnpruk W., Porntangjitlikit S. Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties. Renewable Energy., 2008, 33 (7):1558-1563. https://doi.org/10.1016/j.renene.2007.08.003
6. Yu Y.-S., Yo W., Wasche A. Chemicalcomposition, functionalproperties, and bioactivities of rapeseed-proteinisolates., Food Chemistry, 2008, 107 (1):32-39. https://doi.org/10.1016/j.foodchem.2007.07.061
7. Alonso J. S. J., Sastreb J.A.L., Romero-Avilab C., Lуpeza E. A note on the combustion of blends of diesel and soya, sunflower and rapeseedvegetableoils in alightboile. Biomass and Bioenergy., 2008, 32 (9): 880-886.
8. Corcuera M. A., Rueda L., Fernandez d’Arlas B., Arbelaiz A., Marieta C., Mondragon I., Eceiza A. Microstructure and properties of polyurethanes derived from castor oil., Polymer Degradation and Satbility., 2010, 2175-2184.
9. Mileo P.C., Mulinari D.R., Baptista C.A.R.P., Rocha G.J.M., Goncalves A.R. Mechanical behaviour of polyurethane from сastor oil reinforced sugarcanestraw cellulose composites. Procedia Engineering., 2011, 10:2068-2073.
10. Chang C.-W., Lu T. Natural castor oil based 2-package waterborne polyurethane wood coatings. Progress in Organic Coatings., 2012, 75(4): 435-443. https://doi.org/10.1016/j.porgcoat.2012.06.013
11. Oprea S. Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers on the hard-segment structure. Polymer Degradation and Stability., 2010, 95(12):2396-2404. https://doi.org/10.1016/j.polymdegradstab.2010.08.013
12. Galgali P., Agashe M., Varma J. Sugar-linked bidegradable polymers: regio-spesific ester bonds of glucose hydroxyls in their reaction with maleic anhydride functionalized polystyrene and elucidation of the polymer structures formed. Carbohydrate Polymes., 2007, 67(4):576–585. https://doi.org/10.1016/j.carbpol.2006.06.035
13. Savelyev Yu.V., Markovska L.A. Sposib oderzhannia pinopoliuretaniv, zdatnykh do dehradatsii. Ukrainian Patent 106843. October 10,2014.
14. Savelyev Yu.V., Markovska L.A., Akhranovich O.R., Savelyeva O. O., Parkhomenko N. I. Pinopoliuretanovyi material. Ukrainian Patent 114849 March 27, 2017.
15. Ermolovych O.A., Makarevych A.V., Honcharova E.P., Vlasova H.M. Metodyi otsenky byorazlahaemosty polymernyikh materyalov. Byotekhnolohyia., 2005, no. 4:47-54.
16. Grima S., Bellon-Maurel V., Feuilloley P., Francoise S. Aerobic biodegradation of polymers in solid-state conditions: a review of environmental and physicochemical parameter settings in laboratory simulations. Journal of Polymers and the Environment., 2000, 8(4): 183-195. https://doi.org/10.1023/A:1015297727244
17. GOST 9.060-75. Edinaya sistema zaschityi ot korrozii i stareniya. Metod laboratornyih ispyitaniy na ustoychivost k mikrobiologicheskomu razrusheniyu. Moscow:Izd-vo standartov, 1975:10.
18. Mishustin E. N. Mikrobiologiya. Moscow: Agropromizdat, 1987: 368.
Надійшла до редакції 13 серпня 2018 р.