2019 (1) 5
https://doi.org/10.15407/polymerj.41.01.041
Influence of filler morphology on electrical and thermal properties of the composites based on the polyethylene filled with thermally expanded graphite
O.V. Maruzhenko1,2, Ye.P. Mamunya1, S. Pruvost2, G. Boiteux3, L. Yu. Matzui4, L. L. Vovchenko4
1Institute of Macromolecular Chemistry of NAS of Ukraine
48, Kharkivske shose, Kyiv, 02160, Ukraine
2Universite de Lyon, INSA Lyon, Ingenierie des Materiaux Polymeres
UMR CNRS 5223, 69 621 Villeurbanne Cedex, France
3Universite de Lyon, Universite Lyon 1, Ingйnierie des Materiaux Polymeres
UMR CNRS 5223, 69 622 Villeurbanne Cedex, France
4Department of Physics, Taras Shevchenko National University of Kyiv
64/13, Volodymyrska str., Kyiv 01601, Ukraine
Polym. J., 2019, 41, no. 1: 41-49
Section: Structure and properties.
Language: Russian.
Abstract:
The electrical and thermal conductivities of polymer nanocomposites based on ultrahigh molecular weight polyethylene (UHMWPE) and high-density polyethylene (HDPE) were studied with a segregated and random distribution of the nanofiller, which was taken as thermally expanded graphite (TEG). The segregated structure has an ordered 3D distribution of filler particles in a framework in a polymer matrix with a high local concentration φloc, which is significantly higher than the average φ for the entire volume of the composite, φloc >> φ. Concentration dependence of electrical conductivity is described by the percolation equation with percolation thresholds – 0.5 and 6.9 vol.%, critical exponent t – 4.0 and 2.6, parameter δ0 – 530 and 0.43 S/cm for the segregated and statistical systems, respectively. Thermal conductivity for both systems is described by a parallel model, which can be explained by the lengthy structure of the filler in the volume of the polymer. The segregated structure has a higher thermal conductivity of the filler λf = 33 W/m·K versus λf = 15 W/m·K for the random distribution of the filler. The higher values of conductivity parameters λf, δ0, and lower percolation threshold φc for the segregated structure are explained by the high local concentration of filler particles in the framework, which ensures better transfer of electrical and heat flow through the presence of direct contacts of particles in the framework compared to its random distribution.
Key words: polymer composites, thermally expanded graphite, segregated structure, electrical conductivity, thermal conductivity.
References
- Friedrich K., Breuer U. Multifunctionality of polymer composites. Challenges and new solutions. USA: Elsevier Inc. 2015.
- Metal, ceramic and polymeric composites for various uses. J. Cuppoletti, ed.: InTech, Rijeka, Croatia, 2011. https://doi.org/10.5772/1428
- Naveen M., Gurudatt N., Shim Y. Applications of conducting polymer composites to electrochemical sensors: A review. Appl. Mater. Today, 2017, 9: 419–433. https://doi.org/10.1016/j.apmt.2017.09.001
- Kusy R. P. Influence of particle size ratio on the continuity of aggregates. J. Appl. Phys., 1977, 48: 5301–5305. https://doi.org/10.1063/1.323560
- Deng S., Wang J., Zong G., Chen F., Chai S., Fu Q. Effect of chain structure on the thermal conductivity of expanded graphite/polymer composites. RSC Adv., 2016, 6(12): 10185–10191. https://doi.org/10.1039/C5RA26272K
- Wu K., Xue Y., Yang W., Chai S., Chen F., Fu Q. Largely enhanced thermal and electrical conductivity via constructing double percolated filler network in polypropylene/expanded graphite – Multi-wall carbon nanotubes ternary composites. Compos. Sci. Technol., 2016, 130: 28–35. https://doi.org/10.1016/j.compscitech.2016.04.034
- George J.J., Bhadra S., Bhowmick A.K. Influence of carbon-based nanofillers on the electrical and dielectric properties of ethylene vinyl acetate nanocomposites. Polym. Compos., 2010, 31(2): 218–225.
- Sever K., Tavman I.H., Seki Y., Turgut A., Omastova M., Ozdemir I. Electrical and mechanical properties of expanded graphite/high density polyethylene nanocomposites. Compos. Part B Eng., 2013, 53: 226–233. https://doi.org/10.1016/j.compositesb.2013.04.069
- Vovchenko L.L., Matzui L.Y., Kulichenko A.A. Thermal characterization of expanded graphite and its composites. Inorg. Mater., 2007, 43(6): 597–601. https://doi.org/10.1134/S0020168507060088
- Debelak B, Lafdi K. Use of exfoliated graphite filler to enhance polymer physical properties. Carbon, 2007, 45(9): 1727–1734. https://doi.org/10.1016/j.carbon.2007.05.010
- Noh Y.J., Kim H.S., Ku B.-C., Khil M.-S., Kim S.Y. Thermal Conductivity of Polymer Composites with Geometric Characteristics of Carbon Allotropes. Adv. Eng. Mater., 2016, 18(7): 1127–1132. https://doi.org/10.1002/adem.201500451
- Kim H.S., Kim J.H., Yang C.M., Kim S.Y. Synergistic enhancement of thermal conductivity in composites filled with expanded graphite and multi-walled carbon nanotube fillers via melt-compounding based on polymerizable low-viscosity oligomer matrix. J. Alloys Compd., 2017, 690: 274–280. https://doi.org/10.1016/j.jallcom.2016.08.141
- Kim H.S., Na J.H., Jung Y.C., Kim S.Y. Synergistic enhancement of thermal conductivity in polymer composites filled with self-hybrid expanded graphite fillers. J. Non Cryst. Solids., 2016, 450: 75–81. https://doi.org/10.1016/j.jnoncrysol.2016.07.038
- Che J, Wu K, Lin Y, Wang K, Fu Q. Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy. Compos. Part A. Appl. Sci. Manuf., 2017, 99: 32–40. https://doi.org/10.1016/j.compositesa.2017.04.001
- Kharkov E.I., Lysov V.I., Matzui L.Yu., Vovchenko L.L., Tsurul M.F., Morozovskaya N.O., Ukrainian Patent N33777A, February 15, 2001.
- Vovchenko L., Zakharenko M., Babich M., Brusilovetz A. Thermoexfoliated graphite as support for production of metal–graphite nanocomposites. J. Phys. Chem. Solids, 2004, 65: 171–175. https://doi.org/10.1016/j.jpcs.2003.10.012
- He Y. Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations. Thermochim. Acta, 2005, 436(1-2): 122–129. https://doi.org/10.1016/j.tca.2005.06.026
- Gustafsson S. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum., 1991, 62(3): 797. https://doi.org/10.1063/1.1142087
- Bohac V., Gustavsson M., Kubicar L., Gustafsson S. Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyser. Rev. Sci. Instrum., 2000, 71(6): 2452. https://doi.org/10.1063/1.1150635
- Peacock A. Handbook of Polyethylene: Structures, Properties, and Applications. New York: Marcel Dekker, Inc, 2000. https://doi.org/10.1201/9781482295467
- Vadahanambi S., Jung J.-H., Oh I.-K. Microwave syntheses of graphene and graphene decorated with metal nanoparticles. Carbon, 2011, 49: 4449–4457. https://doi.org/10.1016/j.carbon.2011.06.038
- Stauffer D. Aharony A. Introduction to Percolation Theory. London: CRC press, 1994.
- Kirkpatrick S. Percolation and Conduction. Rev. Mod. Phys., 1973, 45(4): 574–588. https://doi.org/10.1103/RevModPhys.45.574
- Mamunya Ye.P., Davidenko V.V., Pissis P., Lebedev E.V. Electrical and thermal conductivity of polymers filled with metal powders. Europ. Pol. J., 2002, 38: 1887–1897. https://doi.org/10.1016/S0014-3057(02)00064-2
- Nan C.W. Physics of inhomogeneous inorganic materials. Prog. Mater. Sci., 1993, 37(1): 1–116. https://doi.org/10.1016/0079-6425(93)90004-5
- Tuononen H., Fukunaga K., Kuosmanen M., Ketolainen J., Peiponen K.E. Wiener bounds for complex permittivity in terahertz spectroscopy: case study of two-phase pharmaceutical tablets. Appl. Spectrosc., 2010, 64(1): 127–131. https://doi.org/10.1366/000370210792966170
- Mamunya Ye., Boudenne A., Lebovka N., Ibos L., Candau Y., Lisunova M. Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos. Sci. Technol., 2008, 68(9): 1981–1988. https://doi.org/10.1016/j.compscitech.2007.11.014
- Jouni M., Boudenne A., Boiteux G., Massardier V., Garnier B., Serghei A. Electrical and thermal properties of polyethylene/silver nanoparticle composites. Polym. Compos., 2013, 34: 778–786. https://doi.org/10.1002/pc.22478
- Lichtenecker K. Der elektrische Leitungswiderstand kьnstlicher und natьrlicher Aggregate. Physikalische Zeitschrift, 1924, 25: 225–233.
- Pierson H. O. Handbook of carbon, graphite, diamond and fullerenes. Properties, processing and applications. New Jersey: Noyes Publications, 1993.