2019 (2) 1

Chemical and Physical modification of starch: modern trends

 

O.A. Radchenko, S.I. Sinelnikov, S.V. Riabov, L.A. Goncharenko

 

Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2019, 41, no. 2: 77-95

 

Section: Review.

 

Language: Ukrainian.

 

Abstract:

 

Starch is a polysaccharide having unique properties, like ability to be renewed easily in nature, biodegradability, and in addition, it is inexpensive, readily-available product with extensive application in the food industry and other areas, like tissue engineering, drug release, purification of waste waters, developing of biodegradable materials. To bind, thicken, texture, stabilise and gel-forming are some of the traditional functions of starch.      

So, native starches (corn normal and waxy, wheat, potato and tapioca) are perfectly suited to a wide variety of applications, food or non-food, where their properties remain irreplaceable. However, usage of native starches is limited due to retrogradation and instability in acid conditions, which result in syneresis and unstable texture, gelatinization difficulties, viscosity changes, low stability at high temperatures etc.

In some cases, there is a nessecity to improve the performance of the starch and to respond to the specific needs of customers, giving other improved characteristics:  solubility with cold water, more stable viscosity with the variations of temperature, hot fluidity, better stability in thaw/freezing cycles, stability at low pH, stability during food processing (high pressure, heat treatment, extrusion) etc.

In this review we have provided data dealing with various chemical and physical modifications of starch. Chemical modifications are ensured by esterification, etherification, cross-linking, oxidation, acid hydrolysis and dual modification as well. In turn, phycical procedures encompasses the following: pregelatinization, hydrothermal heat treatment, extrusion, ultrasound treatment, impulse electric field etc.

 It is worth to mention that physical modification methods are currently most requested, due to their ecology-friendly character and ability to get modified starches without involving (or minimization) a hazardous chemical reagents. The main accent in the review presented is placed on the application of modified starches in food industry.   

 

Key words: starch, chemical modification, physical modification, starch derivatives.

 

References

  1. Xie F., Pollet E., Halley P.J., Averous L. Starch-based nano-biocomposites. Prog. Polym. Sci., 2013, 38, Issue 10–11: 1590–1628. https://doi.org/10.1016/j.progpolymsci.2013.05.002
  2. Ambigaipalan P., Hoover R., Donner E., Liu Q., Jaiswal S., Chibbar R., Nantanga K.K.M., Seetharaman K. Structure of faba bean, black bean and pinto bean starches at different levels of granule organizations and their phisicochemical properties. Food Res. Int., 2011, 44, Issue 9: 2962–2974. https://doi.org/10.1016/j.foodres.2011.07.006
  3. Li W., Xiao X., Zhang W., Zheng J., Luo Q., Ouyang S., Zhang G. Compositional, morphological, structural and phisicochemical properties of starches from seven naked barley cultivas grown in China. Food Res. Int., 2014, 58: 7–14. https://doi.org/10.1016/j.foodres.2014.01.053
  4. Sajilata M.G., Singhal R.S. Specialty starches for snack foods. Carbohydr. Polym., 2005, no. 59: 131–151. https://doi.org/10.1016/j.carbpol.2004.08.012
  5. Miyazaki M.R., Hung P.V., Maeda T., Morita N. Recent advances in application of modified starches for bread making. Trends Food Sci. Technol., 2006, 17:591–599. https://doi.org/10.1016/j.tifs.2006.05.002
  6. Hirsch J., Kokini J. Understanding the Mechanism of Cross-Linking Agents (POCl3, STMP, and EPI) Through Swelling Behavior and Pasting Properties of Cross-Linked Waxy Maize Starches. Cereal Chem. 2002, Vol. 79, no. 1, p. 102–107. https://doi.org/10.1094/CCHEM.2002.79.1.102
  7. Koo S.H., Lee K.Y., Lee H.G. Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocolloids, 2010, 24, Issue 6–7: 619–625. https://doi.org/10.1016/j.foodhyd.2010.02.009
  8. Chi H., Xu K., Wu X., Chen Q., Xue D., Song C., Zhang W., Wang P. Effect of acetylation on the properties of corn starch. Food Chem., 2008, 106, Issue 3: 923–928. https://doi.org/10.1016/j.foodchem.2007.07.002
  9. Carmona-Garcia R., Sanchez-Rivera M.M., Mendex-Montealvo G., Garza-Montoya B., Bello-Perez L.A. Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana (Musa paradisiaca) starch. Carbohydr. Polym., 2009, no. 76: 117–122. https://doi.org/10.1016/j.carbpol.2008.09.029
  10. Kuo W., Lai H. Effects of reaction conditions on the physicochemical properties of cationic starch studied by RSM. Carbohydr. Polym., 2009, no. 75: 627–635. https://doi.org/10.1016/j.carbpol.2008.09.004
  11. Perera A., Meda V., Tyler R.T. Resistant starch: A review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res. Int., 2010, 43, Issue 8: 1959–1974. https://doi.org/10.1016/j.foodres.2010.06.003
  12. Zhou X., Yang J., Qian F., Qu G. Synthesis and application of modified starch as a shell-core main adhesive in a foundry. J. Appl. Polym. Sci., 2010, 116, Issue 5: 2893–2900. https://doi.org/10.1002/app.31781
  13. Hebeish A., Khalil M.I. Chemical factors affecting preparation of carboxymethyl starch. Starch, 1988, 40, Issue 4: 147–150. https://doi.org/10.1002/star.19880400406
  14. Kittipongpatana O. S., Sirithunyalug J., Laenger R. Preparation and physicochemical properties of sodium carboxymethyl mungbean starches. Carbohydr. Polym., 2006, no. 63: 105–112. https://doi.org/10.1016/j.carbpol.2005.08.024
  15. Lawal O.S., Lechner M.D., Hartmann B., Kulicke W.M. Carboxymethyl cocoyam starch: Synthesis, characterization and influence of the reaction parameters. Starch/Starke, 2007, 59, Issue 5: 224–233. https://doi.org/10.1002/star.200600594
  16. Entholzner E.K., Mielke L.L., Calatzis A.N., Feyh J., Hipp R., Hargasser S.R. Coagulation effects of a recently developed hydroxyethyl starch (HES 130/0·4) compared to hydroxyethyl starches with higher molecular weight. Acta Anaesthesiol Scand., 2000, 44, Issue 9: 1116–1121. https://doi.org/10.1034/j.1399-6576.2000.440914.x
  17. Hoffmann J.N., Vollmar B., Laschke M.W., Inthorn D., Schildberg F.W., Menger M.D. Hydroxyethyl starch (130 kD), but not crystalloid volume support, improves microcirculation during normotensive endotoxemia. Anesthesiology, 2002, 97: 460–470. https://doi.org/10.1097/00000542-200208000-00025
  18. Turkan H., Ural A.U., Beyan C., Yalcin A. Effects of hydroxyethyl starch on blood coagulation profile. Eur. J. Anaesthesiol., 1999, 16, Issue 3: 156–159. https://doi.org/10.1046/j.1365-2346.1999.00407.x
  19. Boldt J., Suttner S. Plasma substitutes. Minerva Anestesiol., 2005, 71: 741–758.
  20. Roche A.M., James M.F., Bennett-Guerrero E., Mythen M.G. A head-to-head comparison of the in vitro coagulation effects of saline-based and balanced electrolyte crystalloid and colloid intravenous fluids. Anesth. Analg., 2006, 102, Issue 4: 1274–1279. https://doi.org/10.1213/01.ane.0000197694.48429.94
  21. Boldt J., Mengistu A., Seyfert U.T., Vogt A., Hellstern P. The impact of a medium molecular weight, low molar substitution hydroxyethyl starch dissolved in a physiologically balanced electrolyte solution on blood coagulation and platelet function in vitro. Vox Sang., 2007, 93 (2): 139–144. https://doi.org/10.1111/j.1423-0410.2007.00946.x
  22. James M.F. Hydroxyethyl starch is preferable to albumin in the perioperative management of cardiac patients. J Cardiothorac. Vasc. Anesth., 2008, 22, Issue 3: 482–484. https://doi.org/10.1053/j.jvca.2008.02.017
  23. Tiryakioglu O., Yildiz G., Vural H., Goncu T., Ozyazicioglu A., Yavuz S. Hydroxyethyl starch versus Ringer solution in cardiopulmonary bypass prime solutions (a randomized controled trail) J. Cardiothorac. Surg., 2008, 3: 45. https://doi.org/10.1186/1749-8090-3-45
  24. Zhou J., Ren L., Tong J., Ma Y. Effect of surface esterification with octenyl succinic anhydride on hydrophilicity of corn starch films. J. Appl. Polym. Sci., 2009, 114, Issue 2: 940–947. https://doi.org/10.1002/app.30709
  25. Singh J., Dartois A., Kaur L. Starch digestibility in food matrix: A review. Trends Food Sci. Technol., 2010, 21, Issue 4: 168–180. https://doi.org/10.1016/j.tifs.2009.12.001
  26. Mali S., Grossmann M.V.E. Preparation of acetylated distarch adipates by extrusion. Food Sci. Technol., 2001, 34, Issue 6: 384–389.
  27. Ackar D., Babic J., Subaric D., Muhamedbegovic B., Jasic M., Budimlic A., Stankovic I. Preparation of modified tapioca starch with mixture of adipic acid and acetanhydride. Works Fac. Agric. Univ. Sarajevo, 2010, 55, no. 60(1): 261–265.
  28. Ackar D., Subaric D., Babic J., Sostarec A., Milicevic D. Modification of barley starch with mixtures of organic dicarboxylic acids and acetanhydride. Technol. Acta, 2011, 4: 27–33.
  29. Siew-Yoong L., Milford H.A. Preparation and characterization of tapioca starch-poly(lactic acid)-Cloisite NA+ nanocomposite foams. J. Appl. Polym. Sci., 2008, 110, Issue 4: 2337–2344.
  30. Moad G. Chemical modification of starch by reactive extrusion. Prog. Polym. Sci., 2011, 36, Issue 2: 218–237. https://doi.org/10.1016/j.progpolymsci.2010.11.002
  31. Zhang S.D., Zhang Y.R., Zhu J., Wang X.L., Yang K.K., Wang Y.Z. Modified corn starches with improved comprehensive properties for preparing thermoplastics. Starch-Stärke, 2007, 59, Issue 6: 258–268. https://doi.org/10.1002/star.200600598
  32. S’anchez-Rivera M.M., Garc’ıa-Su’arez F.J.L., Vel’azquez Del Valle M., Gutierrez-Meraz F., Bello-P’erez L.A. Partial characterization of banana starches oxidized by different levels of sodium hypochlorite. Carbohydr. Polym., 2005, no. 62: 50–56. https://doi.org/10.1016/j.carbpol.2005.07.005
  33. Kuakpetoon D., Wang Y.-J. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydr. Res., 2006, no. 341: 1896–1915. https://doi.org/10.1016/j.carres.2006.04.013
  34. Chan H.T., Leh C.P., Bhat R., Senan C., Williams P.A., Karim A.A. Molecular structure, rheological and thermal characteristicsof ozone-oxidized starch. Food Chem., 2011, 126, Issue 3: 1019–1024. https://doi.org/10.1016/j.foodchem.2010.11.113
  35. Sandhu H.P.S., Manthey F.A., Simsek S. Ozone gas affects physical and chemical properties of wheat (Triticum aestivum L.) starch. Carbohydr. Polym., 2012, no. 87: 1261–1268. https://doi.org/10.1016/j.carbpol.2011.09.003
  36. Klein B., Vanier N.L., Moomand K., Pinto V.Z., Colussi R., Zavareze E. Da Rosa, Dias A.R.G. Ozone oxidation of cassava starch in aqueous solution at different pH. Food Chem., 2014, 155: 167–173. https://doi.org/10.1016/j.foodchem.2014.01.058
  37. Chan H.T., Bhat R., Karim A.A. Physicochemical and functional properties of ozone-oxidized starch. J. Agric. Food Chem., 2009, 57 (13): 5965–5970. https://doi.org/10.1021/jf9008789
  38. Atichokudomchai N., Shobsngob S., Varavinit S. Morphological properties of acid-modified tapioca starch. Starch/ Stärke, 2000, 52, Issue 8–9: 283–289. https://doi.org/10.1002/1521-379X(20009)52:8/9<283::AID-STAR283>3.0.CO;2-Q
  39. Kong X., Kasapis S., Bao J., Corke H. Influence of acid hydrolysis on thermal and rheological properties of amaranth starches varying in amylose content. J. Sci. Food Agric., 2012, 92, Issue 8: 1800–1807. https://doi.org/10.1002/jsfa.5549
  40. Hoover R. Acid-treated starches. Food Rev. Int., 2000, 16, Issue 3: 369–392. https://doi.org/10.1081/FRI-100100292
  41. Singh V., Ali S.Z. Acid degradation of starch. The effect of acid and starch type. Carbohydr. Polym., 2000, no. 41: 191–195. https://doi.org/10.1016/S0144-8617(99)00086-7
  42. Kaur M., Oberoi D.P.S., Sogi D.S., Gill B.S. Physicochemical, morphological and pasting properties of acid treated starches from different botanical sources. J. Food Sci. Technol., 2011, 48, Issue 4: 460–465. https://doi.org/10.1007/s13197-010-0126-x
  43. Zhou Y., Meng S., Chen D., Zhu X., Yuan H. Structure characterization and hypoglycemic effects of dual modified resistant starch from indica rice starch. Carbohydr. Polym., 2014, no. 103: 81–86. https://doi.org/10.1016/j.carbpol.2013.12.020
  44. Karim A.A., Sufha E.H., Zaidul I.S.M. Dual modification of starch via partial enzymatic hydrolysis in the granular state and subsequent hydroxypropylation. J. Agric. Food Chem., 2008, 56 (22): 10901–10907. https://doi.org/10.1021/jf8015442
  45. Xiao H., Lin Q., Liu G., Yu F. A comparative study of the characteristacs of cross-linked, oxidized and dual-modified rice starches. Molecules, 2012, no. 17: 10946–10957. https://doi.org/10.3390/molecules170910946
  46. Zamudio-Flores P.B., Torres A.V., Salgado-Delgado R., Bello-P’erez L.A. Influence of the oxidation and acetylation of banana starch on the mechanical and water barrier properties of modified starch/chitosan blend films. J. Appl. Polym. Sci., 2010, 115, Issue 2: 991–998. https://doi.org/10.1002/app.31047
  47. Carlos-Amaya F., Osorio-Diaz P., Agama-Acevedo E., Yee-Madeira H., Arturo Bello-Perez L. Physicochemical and digestibility properties of double-modified banana (Musa paradisiaca L.) starches. J. Agric. Food Chem., 2011, 59 (4): 1376–1382. https://doi.org/10.1021/jf1035004
  48. Lee H.L., Yoo B. Effect of Hydroxypropylation on Physical and Rheological Properties of Sweet Potato Starch. Food Sci. Technol., 2011, 44, Issue 3: 765–770.
  49. Kim M., Lee S.J. Characteristics of cross-linked potato starch and starch-filled linear low-density polyethylene films. Carbohydr. Polym., 2002, no. 50: 331–337. https://doi.org/10.1016/S0144-8617(02)00057-7
  50. Woggum T., Sirivongpaisal P., Wittay T. Properties and characteristics of dual-modified rice starch based biodegradable films. Int. J. Biol. Macromol., 2014, 67: 490–502. https://doi.org/10.1016/j.ijbiomac.2014.03.029
  51. Steeneken P.A.M., Woortman A.J.J. Superheated starch: A novel approach towards spreadable particle gels. Food Hydrocolloids, 2009, 2, no. 23: 394–405. https://doi.org/10.1016/j.foodhyd.2008.01.006
  52. Lewandowicz G., Soral-Smietana M. Starch modification by iterated syneresis. Carbohydr. Polym., 2004, no. 56: 403–413. https://doi.org/10.1016/j.carbpol.2004.03.013
  53. Lim S.-T., Han J.-A., Lim H.S., BeMiller J.N. Modification of starch by dry heating with ionic gums. Cereal Chem., 2002, 79, no. 5: 601–606. https://doi.org/10.1094/CCHEM.2002.79.5.601
  54. Pkkahuta C., Shobsnggobi S., Varavimit S. Effect of osmotic pressure on starch: New method of physical modification of starch. Starch/Starke, 2007, 59, Issue 2: 78–90. https://doi.org/10.1002/star.200600509
  55. Szymonska J., Krok F., Komorowska-Czepirska E., Rebilas K. Modification of granular potato starch by multiple deep-freezing and thawing. Carbohydr. Polym., 2003, no. 52: 1–10. https://doi.org/10.1016/S0144-8617(02)00263-1
  56. Zarguili I., Maache-Rezzoug Z., Loisel C., Doublier J.-L. Influence of DIL hydrothermal process conditions on the gelatinization properties of standard maize starch. J. Food Eng., 2006, 77 (3): 454–461. https://doi.org/10.1016/j.jfoodeng.2005.07.014
  57. Maache-Rezzoug Z., Maugard T., Zarguili I., Bezzine E., et al. Effect of instantaneous controlled pressure drop (DIC) on Physicochemical properties of wheat, waxy and standard maize starches. J. Cereal Sci., 2010, 49 (3): 346–353. https://doi.org/10.1016/j.jcs.2008.10.005
  58. Huang Z.-Q., Lu J.-P., Li X.-H., Tong Z.F. Effect of mechanical activation on physicochemical properties and structure of cassava starch. Carbohydr. Polym., 2007, no. 68: 128–135. https://doi.org/10.1016/j.carbpol.2006.07.017
  59. Che L.-M., Li D., Wang L.-J., Chen X.D., Mao Z.-H. Micronization and hydrophobic modification of cassava starch. Int. J. Food Prop., 2007, 10 (3): 527–536. https://doi.org/10.1080/10942910600932982
  60. Han Z., Zeng X., Zhang B., Yu S. Effect of pulsed electric fields (PEF) treatment on the properties of corn starch. J. Food Eng., 2009, no. 93: 318–323. https://doi.org/10.1016/j.jfoodeng.2009.01.040
  61. Nemtanu M.R., Minea R. Functional properties of corn starch treated with corona electrical discharges. Macromol. Symp., 2006, 245–246: 525–528. https://doi.org/10.1002/masy.200651375
  62. Anderson A.K., Guraya H.S., James C., Salvaggio L. Digestibility and pasting properties of rice starch heat-moisture treated at the melting temperature (Tm). Starch/Stаrke, 2002, 54, Issue 9: 401–409.
  63. Khunae P., Tran T., Sirivongpaisal P. Effect of heat-moisture on structural and thermal propertiesof rice starch differing in amylose content. Starch/Starke, 2007, 59, Issue 12: 593–599. https://doi.org/10.1002/star.200700618
  64. Watcharatewinkul Y., Uttapap D., Rungsardthong V. Enzyme digestibility and acid/shear stability of heat-moisture treated canna starch. Starch/Starke, 2010, 62, Issue 3–4: 205–216. https://doi.org/10.1002/star.200900221
  65. Vieira F.C., Sarmento S.B.S. Heat-moisture treatment and enzymatic digestibility of Peruvian carrot, sweet potato and ginger starches. Starch/Starke, 2008, 60, Issue 5: 223–232. https://doi.org/10.1002/star.200700690
  66. Jiranuntakul W., Puttanlek C., Rungsardthong V., Puncha-Arnon S., Uttapap D. Microstructural and physicochemical properties of heat-moisture treated waxy and normal starches. J. Food Eng., 2001, 104(2): 246–258. https://doi.org/10.1016/j.jfoodeng.2010.12.016
  67. Fechner P.M., Waterwig S., Kiesow A., Heilman A., et al. Influence of water on molecular and morphological structure of various starches and starch derivatives. Starch/Stаrke, 2005, 57(12): 605–615. https://doi.org/10.1002/star.200500410
  68. Anastasiades A., Thanou S., Loulis D., Stapatoris A., Karapantsios T.D. Rheological and physical characterization of pregelatinized maize starches. J. Food Eng., 2002, no. 52: 57–66. https://doi.org/10.1016/S0260-8774(01)00086-3
  69. Mounsey J.S., O’Riordan E.D. Influence of pregelatinized maize starch on the rheology, microstructure and processing of imitation cheese. J. Food Eng., 2008, no. 84: 57–64. https://doi.org/10.1016/j.jfoodeng.2007.04.017
  70. Majzoobi M., Radi M., Farahnaky A., Jamalian J., et al. Physicochemical properties of pre-gelatinized wheat starch produced by a twin drum drier. J. Agric. Sci. Technol., 2011, no. 13(2): 193–202.
  71. Nakorn K.N., Tongdang T., Sirivongpaisal P. Crystallinity and rheological properties of pregelatinized rice starches differing in amylose content. Starch/Starke, 2009, 61, Issue 2: 101–108. https://doi.org/10.1002/star.200800008
  72. Loisel C., Maache-Rezzong Z., Doublier J.P. in: Tomasik P., Yuryev V.P., Bertoft E. (Eds.). Starch, Progress in Structural Studies. Modifications and Applications, Pol. Soc. Food Technol., Malopolska Branch, 2004.
  73. Yadav R.A., Guha M., Tharananthan N.R., Ramteke S.R. Changes in characteristics of sweet potato flour prepared by different drying techniques. Lebens. Wiss. Technol., 2006, 39: 20–26. https://doi.org/10.1016/j.lwt.2004.12.010
  74. Shefer A., Shefer S. Novel encapsulation system provides controlled release of ingredients. Food Technol., 2003, 57(11): 40–42.
  75. Reineccius G. Flavor Chemistry and Technology, Taylor and Francis Group, Boca Raton, FL, USA, 2006.
  76. Laovachirasuwan P., Peeerapattana J., Srijesdaruk V., Chitropas P., Otsuka M. The physicochemical properties of a spray dried glutinous rice starch biopolymer. Colloids Surf. B, 2010, no. 78: 30–35. https://doi.org/10.1016/j.colsurfb.2010.02.004
  77. Grabowski J.A., Truong V.D., Daubert C.R. Spray drying of amylase hydrolyzed sweet potato puree and physicochemical properties of powder. J. Food Sci., 2006, 71, Issue 5: 209–217. https://doi.org/10.1111/j.1750-3841.2006.00036.x
  78. Brummer T., Meuser F., Lengerich B.V., Niemann C. Effect of extrusion cooking on molecular parameters of corn starch. Starch/Starke, 2002, 54, Issue 1: 1–8. https://doi.org/10.1002/1521-379X(200201)54:1<1::AID-STAR1>3.0.CO;2-9
  79. Vasanthan T., Yeung J., Hoover R. Detrinization of starch in barley flours with thermostable alpha-amylose by extrusion cooking. Starch/Starke, 2001, 53, Issue 12: 616–622. https://doi.org/10.1002/1521-379X(200112)53:12<616::AID-STAR616>3.0.CO;2-M
  80. Mahasukhonthachat K., Sopade P.A., Gidley M.J. Kinetics of starch digestion and functional properties of twin-screw extruded sorghum. J. Cereal Sci., 2010, 51 (3): 392–401. https://doi.org/10.1016/j.jcs.2010.02.008
  81. Vermeylen R., Goderis B., Delcour J.A. An X-ray study of hydrothermally treated potato starch. Carbohydr. Polym., 2006, no. 64: 364–375. https://doi.org/10.1016/j.carbpol.2005.12.024
  82. Kohyama K., Sasaki T. Differential scanning calorimetry and a model calculation of starches annealed at 20 and 50°C. Carbohydr. Polym., 2006, no. 63: 82–88. https://doi.org/10.1016/j.carbpol.2005.08.004
  83. Nakazawa Y., Wang Y.J. Effect of annealing on starch–palmitic acid interaction. Carbohydr. Polym., 2004, no. 57: 327–335. https://doi.org/10.1016/j.carbpol.2004.05.011
  84. 8 Atichokudomchai N., Varavinit S., Chinachoti P. A study of annealing and freeze-thaw stability of acid-modified tapioca starch by differential scanning calometry. Starch/ Stаrke, 2002, 54, Issue 8: 343–349.
  85. Qi X., Tester R.F., Snape C.E., Yuryev V., et al. Molecular basis of the gelatinization and swelling characteristics of waxy barley starches grown in the same location during the same season. Part II. Crystallinity and gelatinization characteristics. J. Cereal Sci., 2004, no. 39: 57–66. https://doi.org/10.1016/S0733-5210(03)00066-3
  86. Qi X., Tester R.F., Snape C.E., Ansell R. The effect of annealing on structure and gelatinization of maize starches with amylose dosage series. Prog. Food Biopolym. Res., 2005, no. 1: 1–27.
  87. Shi Y.C. Two- and multi-step annealing of cereal starches in relation to gelatinization. Agric. Food Chem., 2008, 56 (3): 1097–1104. https://doi.org/10.1021/jf072449i
  88. Hormdok R., Noomhorm A. Hydrothermal treatments of rice starch for improvement of rice noodle quality. Swiss Soc. Food Sci. Technol., 2007, no. 40: 1723–1731.
  89. Waduge R.N., Hoover R., Vasanthan T., Gao J., Li J. Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Food Res. Int., 2006, no. 39: 59–77. https://doi.org/10.1016/j.foodres.2005.05.008
  90. Tester R.F., Debon S.J.J. Annealing of starch: A review. Int. J. Biol. Macromol., 2000, 27 (1): 1–12. https://doi.org/10.1016/S0141-8130(99)00121-X
  91. Jayakody I., Hoover R. Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical sources: A review. Carbohydr. Polym., 2008, no. 74: 691–703. https://doi.org/10.1016/j.carbpol.2008.04.032
  92. Karlsson M.E., Eliasson A.C. Gelatinization and reetrogradation of potato (Solanum tuberosum)starchin situ as assessed by differential scanning calorimetry (DSC). Swiss Soc. Food Sci. Technol., 2003, no. 36: 735–738.
  93. Karlsson M.E., Eliasson A.C. Effects of time/temperature treatments on potato (Solanum tuberosum) starch: A comparison of isolated starch and starch in situ. J. Sci. Food Agric., 2003, 83, Issue 15: 1587–1592. https://doi.org/10.1002/jsfa.1583
  94. Genkina N.K., Noda T., Koltisheva G.I., Wasserman L.A., et al. Effects of growth temperature on some structural properties of crystalline lamellae in starches extracted from sweet potatoes (Sunyred and Ayamurasaki). Starch/Starke, 2004, 55, Issue 8: 350–357.
  95. Genkina N.K., Wasserman L.A., Yuryev V.P. Annealing of starches from Potato tubers grown at different environmental temperatures. Effect of heating duration. Carbohydr. Polym., 2004, no. 56: 367–370. https://doi.org/10.1016/j.carbpol.2003.12.009
  96. Kiseleva V.I., Genkina N.K., Tester R.F., Wasserman L.A., et al. Annealing of normal, low and high amylose starches extracted from barley cultivars grown under different environmental conditions. Carbohydr. Polym., 2004, no. 56: 157–168. https://doi.org/10.1016/j.carbpol.2004.01.006
  97. Kiseleva V.I., Krivandin A.V., Forma J., Blaszczak W., et al. Annealing of normal and mutant wheat starches. LN, SEM, DSC and SAXS studies. Carbohydr. Res., 2005, no. 340: 75–83. https://doi.org/10.1016/j.carres.2004.10.012
  98. Koroteeva D.A., Kiseleva V.I., Krivandin A.V., Shatalova O.V., et al. Structural and thermodynamic properties of rice starches with different genetic back-ground. Part 2. Defectiveness of different supramolecular structures in starch granules. Int. J. Biol. Macromol., 2007, 41, Issue 5: 534–547. https://doi.org/10.1016/j.ijbiomac.2007.07.005
  99. Kozlov S.S., Blennow A., Kriandin A.V., Yuryev V.P. Structural and thermodynamic properties of starches extracted from GBSS and GWD supprssed potato lines. Int. J. Biol. Macromol., 2007, 40, Issue 5: 449–460. https://doi.org/10.1016/j.ijbiomac.2006.11.001
  100. Lin J.-H., Wang S.-W., Chang Y.-H. Effect of molecular size on gelatinization thermal properties before and after annealing of rice starch with different amylose contents. Food Hydrocolloids, 2008, 22, Issue 1: 156–163. https://doi.org/10.1016/j.foodhyd.2007.04.004
  101. Ozcan S., Jackson D.S. A response surface analysis of commercial corn starch annealing. Cereal Chem., 2003, 80 (2): 241–243. https://doi.org/10.1094/CCHEM.2003.80.2.241
  102. Tukomane T., Leerapongnum P., Shobsngob S., Varavinit S. Preparation and characterization of annealed enzymatically hydrolyzed tapioca starch and utilization in tableting. Starch/Starke, 2007, 59, Issue 1: 33–45. https://doi.org/10.1002/star.200600524
  103. Genkina N.K., Wilkman J., Bertoft E., Yuryev V.P. Effects of structural impection on gelatinization characteristics of amylopectin. Starches with A- and B-type crystallinity. Biomacromolecules, 2007, 8 (7): 2329–2335. https://doi.org/10.1021/bm070349f
  104. Nakazawa Y., Wang Y.J. Acid hydrolysis of native and annealed starches and branched structure of their Naegeli dextrins. Carbohydr. Res., 2003, 338, Issue 24: 2871–2882. https://doi.org/10.1016/j.carres.2003.09.005
  105. Freitas R.A., Paula R.C., Feitosa J.P.A., Rocha S., Sierakowski M.R. Amylose contents, rheological properties and gelatinization kinetics of yam (Discorea alata) and cassava (Manihot utilisma) starches. Carbohydr. Polym., 2004, no. 55: 3–8. https://doi.org/10.1016/S0144-8617(03)00142-5
  106. Tester R.F., Ansell R., Snape C.E., Yusuph P. Effect of storage temperatures and annealing conditions on the structure and properties of potato (Solanum tuberosum) starch. Int. J. Biol. Macromol., 2005, 36, Issue 1–2: 1–8. https://doi.org/10.1016/j.ijbiomac.2005.02.008
  107. Tsutsui K., Katsuta K., Matoba T., Takemasa M., Nishinari K. Effect of annealing temperature on gelatinization of rice starch suspension as studied by rheological and thermal measurements. J. Agric. Food Chem., 2005, 53 (23): 9056–9063. https://doi.org/10.1021/jf051001j
  108. Adebowale K.O., Afolabi T.A., Olu-Owolabi B.I. Hydrothermal treatment of finger millet (Eleusine coracana) starch. Food Hydrocolloids, 2005, 19, Issue 6: 974–983. https://doi.org/10.1016/j.foodhyd.2004.12.007
  109. Lawal O.S. Studies on the hydrothermal modifications of new cocoyam (Xanthosoma sagittifolium)starch.Int. J. Biol. Macromol., 2005, 37, Issue 5: 268–277. https://doi.org/10.1016/j.ijbiomac.2005.12.016
  110. Gunaratne A., Hoover R. Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr. Polym., 2002, no. 49: 425–437. https://doi.org/10.1016/S0144-8617(01)00354-X
  111. Adebowale K.O., Lawal O.S. Microstructure, physico-chemical properties and retrogradation behavior of mucuna bean (Mucuna pruriens) starch on heat moisture treatments. Food Hydrocolloids, 2003, 17, Issue 3: 265–272. https://doi.org/10.1016/S0268-005X(02)00076-0
  112. Jiranuntakul W., Puttanlek C., Rungsardthong V., Punchaarnon S. Microstructural and physicochemical properties of heat-moisture treated waxy and normal starches. J. Food Eng., 2011, 104, Issue 2: 246–258. https://doi.org/10.1016/j.jfoodeng.2010.12.016
  113. Miyazaki M., Morita N. Effect of heat-moisture treated maize starch on the properties of dough and bread. Food Res. Int., 2005, 38, Issue 4: 369–376. https://doi.org/10.1016/j.foodres.2004.10.015
  114. Olayinka O.O., Adebowale K.O., Olu-Owolabi B.I. Effect of heat-moisture treatment on physicochemical properties of white sorghum starch. Food Hydrocolloids, 2008, 22, Issue 2: 225–230. https://doi.org/10.1016/j.foodhyd.2006.11.004
  115. Pukkahuta C., Suwannawat B., Shobsngob S., Varavinit S. Comparative study of pasting and thermal transition characteristics of osmotic pressure and heat-moisture treated corn starch. Carbohydr. Polym., 2008, no. 72: 527–536. https://doi.org/10.1016/j.carbpol.2007.09.024
  116. Watcharatewinkul Y., Puttanlek C., Rungsardthong V., Uttapap D. Pasting properties of heat-moisture treated canna starch in relation to its structural characteristics. Carbohydr. Polym., 2009, no. 75: 505–511. https://doi.org/10.1016/j.carbpol.2008.08.018
  117. Chung H.J., Lui Q., Hoover R. The impact of heat-moisture treatments on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydr. Polym., 2009, no. 15: 436–447. https://doi.org/10.1016/j.carbpol.2008.08.006
  118. Chung H.J., Liu Q., Hoover R. Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties and nutritional fractions of pea, lentil and navy bean starches. Food Res. Int., 2010, 43, Issue 2: 501–508. https://doi.org/10.1016/j.foodres.2009.07.030
  119. Yoenyongbuddhgai S., Noomhorm A. Effect of physicochemical properties of high-amylose Thai rice flours on vermicelli quality. Cereal Chem., 2002, 79, Issue 4: 481–485. https://doi.org/10.1094/CCHEM.2002.79.4.481
  120. Liu H., Corke H., Ramsden L. The effect of autoclaving on the acetylation of ae, wx and normal maize starches. Starch/Stаrke, 2000, 52, no. 10: 353–360.
  121. Li Y.Q., Chen Q., Liu X.H., Chen Z.X. Inactivationof soybean lipoxygenase in soymilk by pulsed electric fields. Food Chem., 2008, 109, Issue 2: 408–414. https://doi.org/10.1016/j.foodchem.2008.01.001
  122. Marselles-Fontanet A.R., Martin-Belloso O. Optimization and validation of PEF processing conditions to inactivate оxidative enzymes of grape juice. J. Food Eng., 2007, 83, Issue 3: 452–462.
  123. Sampedro F., Rivas A., Rodrigo D., Martinez A., Rodrigo M. Pulsed electric fields inactivation of Lactobacillus plantarum in an orange juice-milk based beverage: Effect of process parameters. J. Food Eng., 2007, 80, Issue 3: 931–938. https://doi.org/10.1016/j.jfoodeng.2006.08.013
  124. Torregrosa F., Esteve M.D., Frigola A., Cortes C. Ascorbic acid stability during refrigerated storage of orange-carrot juice treated by high pulsed electric field and comparison with pasteurized juice. J. Food Eng., 2006, 73, Issue 4: 339–345. https://doi.org/10.1016/j.jfoodeng.2005.01.034
  125. Blaszczak W., Valverde S., Fornal J. Effect of high pressure on the structure of potato starch. Carbohydr. Polym., 2005, no. 59: 377–389. https://doi.org/10.1016/j.carbpol.2004.10.008
  126. Blaszczak W., Fornal J., Kiseleva V.I., Yurgev V.P., et al. Effect of high pressure on thermal, structural and osmotic properties of waxy maize and Hylon VII starch blends. Carbohydr. Polym., 2007, no. 68: 387–396. https://doi.org/10.1016/j.carbpol.2006.12.023
  127. Wang B., Li D., Wang L.J., Yu L.C., et al. Effect of high pressure homogenization on the structure and thermal properties of maize starch. J. Food Eng., 2008, 87, Issue 3: 436–444. https://doi.org/10.1016/j.jfoodeng.2007.12.027
  128. Czechowska-Biskup R., Rokita B., Lotfy S., Ulanski P., Rosiak J.M. Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydr. Polym., 2005, no. 60: 175–184. https://doi.org/10.1016/j.carbpol.2004.12.001
  129. Iida Y., Tuziuti T., Yasui K., Towatu A., Kozuka T. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Inn. Food Sci. Emerg. Technol., 2008, 9, Issue 2: 140–146. https://doi.org/10.1016/j.ifset.2007.03.029
  130. Liu H., Bao J., Du Y., Zhou X., Kennedy J.F. Effect of ultrasonic treatment on the biochemophysical properties of chitosan. Carbohydr. Polym., 2006, no. 64: 553–559. https://doi.org/10.1016/j.carbpol.2005.11.007
  131. Margulis M.A., Margulis I.M. Calorimetric method for measurement of acoustic power absorbed in a volume of a liquid. Ultrasonic Sonochem., 2003, 10: 343–345. https://doi.org/10.1016/S1350-4177(03)00100-7
  132. Han Z., Zeng X., Zhang B., Yu S. Effects of pulsed electric fields (PEF) treatment on the properties of corn starch. J. Food Eng., 2009, 93, Issue 3: 318–323. https://doi.org/10.1016/j.jfoodeng.2009.01.040
  133. Kaasova J., Hubackova B., Kadlec P., Prihoda J., Bubnik Z. Chemical and biochemical changes during microwave treatment of wheat. Czech. J. Food Sci., 2002, 20, no. 2: 74–78. https://doi.org/10.17221/3513-CJFS
  134. Nasehi B., Javaheri S. Application of high pressure in modifying functional properties of starches: A review. Middle-East J. Sci. Res., 2012, 11 (7): 856–861.
  135. Vallons K.J.R., Arendt E.K. Effects of high pressure and temperature on the structure and rheological properties of sorghum starch. Innov. Food Sci. Emerg. Technol., 2009, 10, Issue 4: 449–456. https://doi.org/10.1016/j.ifset.2009.06.008
  136. Vallons K.J.R., Arendt E.K. Understanding high pressure-induced changes in wheat flour-water suspensions using starch–gluten mixtures as model systems. Food Res. Int., 2010, 43, Issue 3: 893–901. https://doi.org/10.1016/j.foodres.2009.12.010
  137. Bauer B.A., Wiehle T., Knorr D. Impact of high hydrostatic pressure treatment on the resistant starch content of wheat starch. Starch/Starke, 2005, 57, Issue 3–4: 124–133. https://doi.org/10.1002/star.200400334
  138. Kawai K., Fukami K., Yamamoto K. Effects of pressure treatment, holding time and starch content on gelatinization and retrogradation properties of potato starch–water mixtures treated with high hydrostatic pressure. Carbohydr. Polym., 2007, no. 69: 590–596. https://doi.org/10.1016/j.carbpol.2007.01.015
  139. Oh H.E., Pinder D.N., Hemar Y., Anema S.G., Wong M. Effect of high-pressure treatment on various starch – in – water suspensions. Food Hydrocolloids, 2008, 22, Issue 1: 150–155. https://doi.org/10.1016/j.foodhyd.2007.01.028
  140. Oh H.E., Anema S.G., Pinder D.N., Wong M. Effects of different components in skim milk on high-pressure-induced gelatinization of waxy rice starch and normal rice starch. Food Chem., 2009, 113, Issue 1: 1–8. https://doi.org/10.1016/j.foodchem.2008.07.107
  141. Simonin H., Guyon C., Orlowska M., De Lamballerie M., Le-Bail A. Gelatinization of waxy starches under high pressure as influenced by pH and osmolarity: Gelatinization kinetics, final structure and pasting properties. LWT-Food Sci. Technol., 2011, 44, Issue 3: 779–786.
  142. Yaldagard M., Mortazavi S.A., Tabatabaie F. The principles of ultra HP treatment and its applications in food processing/preservation: A review of microbiological and quality aspects. Afr. J. Biotechnol., 2008, 7, no. 16: 2739– 2767.
  143. Pukkahuta C., Shobsngob S., Varavinit S. Effect of osmotic pressure on starch: new method of physical modification of starch. Starch/Starke, 2007, 59, Issue 2: 78–90. https://doi.org/10.1002/star.200600509
  144. Stolt M., Oinonen S., Autio K. Effect of high pressure on the physical properties of barley starch. Innov. Food Sci. Emerg. Technol., 2001, 1, Issue 3: 167–175.
  145. Blaszczak W., Fornal J., Valverder S., Garrido L. Pressure-induced changes in the structure of corn starches with different amylose content. Carbohydr. Polym., 2005, no. 61: 132–140. https://doi.org/10.1016/j.carbpol.2005.04.005
  146. Stute R., Klingler R.W., Boguslawski S., Eshtiaghi M.N., Knorr D. Effect of high pressure treatment on starches. Starch/Starke, 1996, 48, Issue 11–12: 399–408. https://doi.org/10.1002/star.19960481104
  147. Jambrak A.R., Herceg Z., Subaric D., Babic J., et al. Ultrasound effect on physical properties of corn starch. Carbohydr. Polym., 2010, no. 79: 91–100. https://doi.org/10.1016/j.carbpol.2009.07.051
  148. Jeyamkondan S., Jayas D.S., Holley R.A. Pulsed electric field processing of foods: A review. J. Food Protect., 1999, 62, Issue 9: 1088–1096. https://doi.org/10.4315/0362-028X-62.9.1088

Надійшла до редакції 23 січня 2019 р.