2019 (2) 1
Chemical and Physical modification of starch: modern trends
O.A. Radchenko, S.I. Sinelnikov, S.V. Riabov, L.A. Goncharenko
Institute of Macromolecular Chemistry NAS of Ukraine
48, Kharkivske shose, Kyiv, 02160, Ukraine
Polym. J., 2019, 41, no. 2: 77-95
Section: Review.
Language: Ukrainian.
Abstract:
Starch is a polysaccharide having unique properties, like ability to be renewed easily in nature, biodegradability, and in addition, it is inexpensive, readily-available product with extensive application in the food industry and other areas, like tissue engineering, drug release, purification of waste waters, developing of biodegradable materials. To bind, thicken, texture, stabilise and gel-forming are some of the traditional functions of starch.
So, native starches (corn normal and waxy, wheat, potato and tapioca) are perfectly suited to a wide variety of applications, food or non-food, where their properties remain irreplaceable. However, usage of native starches is limited due to retrogradation and instability in acid conditions, which result in syneresis and unstable texture, gelatinization difficulties, viscosity changes, low stability at high temperatures etc.
In some cases, there is a nessecity to improve the performance of the starch and to respond to the specific needs of customers, giving other improved characteristics: solubility with cold water, more stable viscosity with the variations of temperature, hot fluidity, better stability in thaw/freezing cycles, stability at low pH, stability during food processing (high pressure, heat treatment, extrusion) etc.
In this review we have provided data dealing with various chemical and physical modifications of starch. Chemical modifications are ensured by esterification, etherification, cross-linking, oxidation, acid hydrolysis and dual modification as well. In turn, phycical procedures encompasses the following: pregelatinization, hydrothermal heat treatment, extrusion, ultrasound treatment, impulse electric field etc.
It is worth to mention that physical modification methods are currently most requested, due to their ecology-friendly character and ability to get modified starches without involving (or minimization) a hazardous chemical reagents. The main accent in the review presented is placed on the application of modified starches in food industry.
Key words: starch, chemical modification, physical modification, starch derivatives.
References
- Xie F., Pollet E., Halley P.J., Averous L. Starch-based nano-biocomposites. Prog. Polym. Sci., 2013, 38, Issue 10–11: 1590–1628. https://doi.org/10.1016/j.progpolymsci.2013.05.002
- Ambigaipalan P., Hoover R., Donner E., Liu Q., Jaiswal S., Chibbar R., Nantanga K.K.M., Seetharaman K. Structure of faba bean, black bean and pinto bean starches at different levels of granule organizations and their phisicochemical properties. Food Res. Int., 2011, 44, Issue 9: 2962–2974. https://doi.org/10.1016/j.foodres.2011.07.006
- Li W., Xiao X., Zhang W., Zheng J., Luo Q., Ouyang S., Zhang G. Compositional, morphological, structural and phisicochemical properties of starches from seven naked barley cultivas grown in China. Food Res. Int., 2014, 58: 7–14. https://doi.org/10.1016/j.foodres.2014.01.053
- Sajilata M.G., Singhal R.S. Specialty starches for snack foods. Carbohydr. Polym., 2005, no. 59: 131–151. https://doi.org/10.1016/j.carbpol.2004.08.012
- Miyazaki M.R., Hung P.V., Maeda T., Morita N. Recent advances in application of modified starches for bread making. Trends Food Sci. Technol., 2006, 17:591–599. https://doi.org/10.1016/j.tifs.2006.05.002
- Hirsch J., Kokini J. Understanding the Mechanism of Cross-Linking Agents (POCl3, STMP, and EPI) Through Swelling Behavior and Pasting Properties of Cross-Linked Waxy Maize Starches. Cereal Chem. 2002, Vol. 79, no. 1, p. 102–107. https://doi.org/10.1094/CCHEM.2002.79.1.102
- Koo S.H., Lee K.Y., Lee H.G. Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocolloids, 2010, 24, Issue 6–7: 619–625. https://doi.org/10.1016/j.foodhyd.2010.02.009
- Chi H., Xu K., Wu X., Chen Q., Xue D., Song C., Zhang W., Wang P. Effect of acetylation on the properties of corn starch. Food Chem., 2008, 106, Issue 3: 923–928. https://doi.org/10.1016/j.foodchem.2007.07.002
- Carmona-Garcia R., Sanchez-Rivera M.M., Mendex-Montealvo G., Garza-Montoya B., Bello-Perez L.A. Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana (Musa paradisiaca) starch. Carbohydr. Polym., 2009, no. 76: 117–122. https://doi.org/10.1016/j.carbpol.2008.09.029
- Kuo W., Lai H. Effects of reaction conditions on the physicochemical properties of cationic starch studied by RSM. Carbohydr. Polym., 2009, no. 75: 627–635. https://doi.org/10.1016/j.carbpol.2008.09.004
- Perera A., Meda V., Tyler R.T. Resistant starch: A review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res. Int., 2010, 43, Issue 8: 1959–1974. https://doi.org/10.1016/j.foodres.2010.06.003
- Zhou X., Yang J., Qian F., Qu G. Synthesis and application of modified starch as a shell-core main adhesive in a foundry. J. Appl. Polym. Sci., 2010, 116, Issue 5: 2893–2900. https://doi.org/10.1002/app.31781
- Hebeish A., Khalil M.I. Chemical factors affecting preparation of carboxymethyl starch. Starch, 1988, 40, Issue 4: 147–150. https://doi.org/10.1002/star.19880400406
- Kittipongpatana O. S., Sirithunyalug J., Laenger R. Preparation and physicochemical properties of sodium carboxymethyl mungbean starches. Carbohydr. Polym., 2006, no. 63: 105–112. https://doi.org/10.1016/j.carbpol.2005.08.024
- Lawal O.S., Lechner M.D., Hartmann B., Kulicke W.M. Carboxymethyl cocoyam starch: Synthesis, characterization and influence of the reaction parameters. Starch/Starke, 2007, 59, Issue 5: 224–233. https://doi.org/10.1002/star.200600594
- Entholzner E.K., Mielke L.L., Calatzis A.N., Feyh J., Hipp R., Hargasser S.R. Coagulation effects of a recently developed hydroxyethyl starch (HES 130/0·4) compared to hydroxyethyl starches with higher molecular weight. Acta Anaesthesiol Scand., 2000, 44, Issue 9: 1116–1121. https://doi.org/10.1034/j.1399-6576.2000.440914.x
- Hoffmann J.N., Vollmar B., Laschke M.W., Inthorn D., Schildberg F.W., Menger M.D. Hydroxyethyl starch (130 kD), but not crystalloid volume support, improves microcirculation during normotensive endotoxemia. Anesthesiology, 2002, 97: 460–470. https://doi.org/10.1097/00000542-200208000-00025
- Turkan H., Ural A.U., Beyan C., Yalcin A. Effects of hydroxyethyl starch on blood coagulation profile. Eur. J. Anaesthesiol., 1999, 16, Issue 3: 156–159. https://doi.org/10.1046/j.1365-2346.1999.00407.x
- Boldt J., Suttner S. Plasma substitutes. Minerva Anestesiol., 2005, 71: 741–758.
- Roche A.M., James M.F., Bennett-Guerrero E., Mythen M.G. A head-to-head comparison of the in vitro coagulation effects of saline-based and balanced electrolyte crystalloid and colloid intravenous fluids. Anesth. Analg., 2006, 102, Issue 4: 1274–1279. https://doi.org/10.1213/01.ane.0000197694.48429.94
- Boldt J., Mengistu A., Seyfert U.T., Vogt A., Hellstern P. The impact of a medium molecular weight, low molar substitution hydroxyethyl starch dissolved in a physiologically balanced electrolyte solution on blood coagulation and platelet function in vitro. Vox Sang., 2007, 93 (2): 139–144. https://doi.org/10.1111/j.1423-0410.2007.00946.x
- James M.F. Hydroxyethyl starch is preferable to albumin in the perioperative management of cardiac patients. J Cardiothorac. Vasc. Anesth., 2008, 22, Issue 3: 482–484. https://doi.org/10.1053/j.jvca.2008.02.017
- Tiryakioglu O., Yildiz G., Vural H., Goncu T., Ozyazicioglu A., Yavuz S. Hydroxyethyl starch versus Ringer solution in cardiopulmonary bypass prime solutions (a randomized controled trail) J. Cardiothorac. Surg., 2008, 3: 45. https://doi.org/10.1186/1749-8090-3-45
- Zhou J., Ren L., Tong J., Ma Y. Effect of surface esterification with octenyl succinic anhydride on hydrophilicity of corn starch films. J. Appl. Polym. Sci., 2009, 114, Issue 2: 940–947. https://doi.org/10.1002/app.30709
- Singh J., Dartois A., Kaur L. Starch digestibility in food matrix: A review. Trends Food Sci. Technol., 2010, 21, Issue 4: 168–180. https://doi.org/10.1016/j.tifs.2009.12.001
- Mali S., Grossmann M.V.E. Preparation of acetylated distarch adipates by extrusion. Food Sci. Technol., 2001, 34, Issue 6: 384–389.
- Ackar D., Babic J., Subaric D., Muhamedbegovic B., Jasic M., Budimlic A., Stankovic I. Preparation of modified tapioca starch with mixture of adipic acid and acetanhydride. Works Fac. Agric. Univ. Sarajevo, 2010, 55, no. 60(1): 261–265.
- Ackar D., Subaric D., Babic J., Sostarec A., Milicevic D. Modification of barley starch with mixtures of organic dicarboxylic acids and acetanhydride. Technol. Acta, 2011, 4: 27–33.
- Siew-Yoong L., Milford H.A. Preparation and characterization of tapioca starch-poly(lactic acid)-Cloisite NA+ nanocomposite foams. J. Appl. Polym. Sci., 2008, 110, Issue 4: 2337–2344.
- Moad G. Chemical modification of starch by reactive extrusion. Prog. Polym. Sci., 2011, 36, Issue 2: 218–237. https://doi.org/10.1016/j.progpolymsci.2010.11.002
- Zhang S.D., Zhang Y.R., Zhu J., Wang X.L., Yang K.K., Wang Y.Z. Modified corn starches with improved comprehensive properties for preparing thermoplastics. Starch-Stärke, 2007, 59, Issue 6: 258–268. https://doi.org/10.1002/star.200600598
- S’anchez-Rivera M.M., Garc’ıa-Su’arez F.J.L., Vel’azquez Del Valle M., Gutierrez-Meraz F., Bello-P’erez L.A. Partial characterization of banana starches oxidized by different levels of sodium hypochlorite. Carbohydr. Polym., 2005, no. 62: 50–56. https://doi.org/10.1016/j.carbpol.2005.07.005
- Kuakpetoon D., Wang Y.-J. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydr. Res., 2006, no. 341: 1896–1915. https://doi.org/10.1016/j.carres.2006.04.013
- Chan H.T., Leh C.P., Bhat R., Senan C., Williams P.A., Karim A.A. Molecular structure, rheological and thermal characteristicsof ozone-oxidized starch. Food Chem., 2011, 126, Issue 3: 1019–1024. https://doi.org/10.1016/j.foodchem.2010.11.113
- Sandhu H.P.S., Manthey F.A., Simsek S. Ozone gas affects physical and chemical properties of wheat (Triticum aestivum L.) starch. Carbohydr. Polym., 2012, no. 87: 1261–1268. https://doi.org/10.1016/j.carbpol.2011.09.003
- Klein B., Vanier N.L., Moomand K., Pinto V.Z., Colussi R., Zavareze E. Da Rosa, Dias A.R.G. Ozone oxidation of cassava starch in aqueous solution at different pH. Food Chem., 2014, 155: 167–173. https://doi.org/10.1016/j.foodchem.2014.01.058
- Chan H.T., Bhat R., Karim A.A. Physicochemical and functional properties of ozone-oxidized starch. J. Agric. Food Chem., 2009, 57 (13): 5965–5970. https://doi.org/10.1021/jf9008789
- Atichokudomchai N., Shobsngob S., Varavinit S. Morphological properties of acid-modified tapioca starch. Starch/ Stärke, 2000, 52, Issue 8–9: 283–289. https://doi.org/10.1002/1521-379X(20009)52:8/9<283::AID-STAR283>3.0.CO;2-Q
- Kong X., Kasapis S., Bao J., Corke H. Influence of acid hydrolysis on thermal and rheological properties of amaranth starches varying in amylose content. J. Sci. Food Agric., 2012, 92, Issue 8: 1800–1807. https://doi.org/10.1002/jsfa.5549
- Hoover R. Acid-treated starches. Food Rev. Int., 2000, 16, Issue 3: 369–392. https://doi.org/10.1081/FRI-100100292
- Singh V., Ali S.Z. Acid degradation of starch. The effect of acid and starch type. Carbohydr. Polym., 2000, no. 41: 191–195. https://doi.org/10.1016/S0144-8617(99)00086-7
- Kaur M., Oberoi D.P.S., Sogi D.S., Gill B.S. Physicochemical, morphological and pasting properties of acid treated starches from different botanical sources. J. Food Sci. Technol., 2011, 48, Issue 4: 460–465. https://doi.org/10.1007/s13197-010-0126-x
- Zhou Y., Meng S., Chen D., Zhu X., Yuan H. Structure characterization and hypoglycemic effects of dual modified resistant starch from indica rice starch. Carbohydr. Polym., 2014, no. 103: 81–86. https://doi.org/10.1016/j.carbpol.2013.12.020
- Karim A.A., Sufha E.H., Zaidul I.S.M. Dual modification of starch via partial enzymatic hydrolysis in the granular state and subsequent hydroxypropylation. J. Agric. Food Chem., 2008, 56 (22): 10901–10907. https://doi.org/10.1021/jf8015442
- Xiao H., Lin Q., Liu G., Yu F. A comparative study of the characteristacs of cross-linked, oxidized and dual-modified rice starches. Molecules, 2012, no. 17: 10946–10957. https://doi.org/10.3390/molecules170910946
- Zamudio-Flores P.B., Torres A.V., Salgado-Delgado R., Bello-P’erez L.A. Influence of the oxidation and acetylation of banana starch on the mechanical and water barrier properties of modified starch/chitosan blend films. J. Appl. Polym. Sci., 2010, 115, Issue 2: 991–998. https://doi.org/10.1002/app.31047
- Carlos-Amaya F., Osorio-Diaz P., Agama-Acevedo E., Yee-Madeira H., Arturo Bello-Perez L. Physicochemical and digestibility properties of double-modified banana (Musa paradisiaca L.) starches. J. Agric. Food Chem., 2011, 59 (4): 1376–1382. https://doi.org/10.1021/jf1035004
- Lee H.L., Yoo B. Effect of Hydroxypropylation on Physical and Rheological Properties of Sweet Potato Starch. Food Sci. Technol., 2011, 44, Issue 3: 765–770.
- Kim M., Lee S.J. Characteristics of cross-linked potato starch and starch-filled linear low-density polyethylene films. Carbohydr. Polym., 2002, no. 50: 331–337. https://doi.org/10.1016/S0144-8617(02)00057-7
- Woggum T., Sirivongpaisal P., Wittay T. Properties and characteristics of dual-modified rice starch based biodegradable films. Int. J. Biol. Macromol., 2014, 67: 490–502. https://doi.org/10.1016/j.ijbiomac.2014.03.029
- Steeneken P.A.M., Woortman A.J.J. Superheated starch: A novel approach towards spreadable particle gels. Food Hydrocolloids, 2009, 2, no. 23: 394–405. https://doi.org/10.1016/j.foodhyd.2008.01.006
- Lewandowicz G., Soral-Smietana M. Starch modification by iterated syneresis. Carbohydr. Polym., 2004, no. 56: 403–413. https://doi.org/10.1016/j.carbpol.2004.03.013
- Lim S.-T., Han J.-A., Lim H.S., BeMiller J.N. Modification of starch by dry heating with ionic gums. Cereal Chem., 2002, 79, no. 5: 601–606. https://doi.org/10.1094/CCHEM.2002.79.5.601
- Pkkahuta C., Shobsnggobi S., Varavimit S. Effect of osmotic pressure on starch: New method of physical modification of starch. Starch/Starke, 2007, 59, Issue 2: 78–90. https://doi.org/10.1002/star.200600509
- Szymonska J., Krok F., Komorowska-Czepirska E., Rebilas K. Modification of granular potato starch by multiple deep-freezing and thawing. Carbohydr. Polym., 2003, no. 52: 1–10. https://doi.org/10.1016/S0144-8617(02)00263-1
- Zarguili I., Maache-Rezzoug Z., Loisel C., Doublier J.-L. Influence of DIL hydrothermal process conditions on the gelatinization properties of standard maize starch. J. Food Eng., 2006, 77 (3): 454–461. https://doi.org/10.1016/j.jfoodeng.2005.07.014
- Maache-Rezzoug Z., Maugard T., Zarguili I., Bezzine E., et al. Effect of instantaneous controlled pressure drop (DIC) on Physicochemical properties of wheat, waxy and standard maize starches. J. Cereal Sci., 2010, 49 (3): 346–353. https://doi.org/10.1016/j.jcs.2008.10.005
- Huang Z.-Q., Lu J.-P., Li X.-H., Tong Z.F. Effect of mechanical activation on physicochemical properties and structure of cassava starch. Carbohydr. Polym., 2007, no. 68: 128–135. https://doi.org/10.1016/j.carbpol.2006.07.017
- Che L.-M., Li D., Wang L.-J., Chen X.D., Mao Z.-H. Micronization and hydrophobic modification of cassava starch. Int. J. Food Prop., 2007, 10 (3): 527–536. https://doi.org/10.1080/10942910600932982
- Han Z., Zeng X., Zhang B., Yu S. Effect of pulsed electric fields (PEF) treatment on the properties of corn starch. J. Food Eng., 2009, no. 93: 318–323. https://doi.org/10.1016/j.jfoodeng.2009.01.040
- Nemtanu M.R., Minea R. Functional properties of corn starch treated with corona electrical discharges. Macromol. Symp., 2006, 245–246: 525–528. https://doi.org/10.1002/masy.200651375
- Anderson A.K., Guraya H.S., James C., Salvaggio L. Digestibility and pasting properties of rice starch heat-moisture treated at the melting temperature (Tm). Starch/Stаrke, 2002, 54, Issue 9: 401–409.
- Khunae P., Tran T., Sirivongpaisal P. Effect of heat-moisture on structural and thermal propertiesof rice starch differing in amylose content. Starch/Starke, 2007, 59, Issue 12: 593–599. https://doi.org/10.1002/star.200700618
- Watcharatewinkul Y., Uttapap D., Rungsardthong V. Enzyme digestibility and acid/shear stability of heat-moisture treated canna starch. Starch/Starke, 2010, 62, Issue 3–4: 205–216. https://doi.org/10.1002/star.200900221
- Vieira F.C., Sarmento S.B.S. Heat-moisture treatment and enzymatic digestibility of Peruvian carrot, sweet potato and ginger starches. Starch/Starke, 2008, 60, Issue 5: 223–232. https://doi.org/10.1002/star.200700690
- Jiranuntakul W., Puttanlek C., Rungsardthong V., Puncha-Arnon S., Uttapap D. Microstructural and physicochemical properties of heat-moisture treated waxy and normal starches. J. Food Eng., 2001, 104(2): 246–258. https://doi.org/10.1016/j.jfoodeng.2010.12.016
- Fechner P.M., Waterwig S., Kiesow A., Heilman A., et al. Influence of water on molecular and morphological structure of various starches and starch derivatives. Starch/Stаrke, 2005, 57(12): 605–615. https://doi.org/10.1002/star.200500410
- Anastasiades A., Thanou S., Loulis D., Stapatoris A., Karapantsios T.D. Rheological and physical characterization of pregelatinized maize starches. J. Food Eng., 2002, no. 52: 57–66. https://doi.org/10.1016/S0260-8774(01)00086-3
- Mounsey J.S., O’Riordan E.D. Influence of pregelatinized maize starch on the rheology, microstructure and processing of imitation cheese. J. Food Eng., 2008, no. 84: 57–64. https://doi.org/10.1016/j.jfoodeng.2007.04.017
- Majzoobi M., Radi M., Farahnaky A., Jamalian J., et al. Physicochemical properties of pre-gelatinized wheat starch produced by a twin drum drier. J. Agric. Sci. Technol., 2011, no. 13(2): 193–202.
- Nakorn K.N., Tongdang T., Sirivongpaisal P. Crystallinity and rheological properties of pregelatinized rice starches differing in amylose content. Starch/Starke, 2009, 61, Issue 2: 101–108. https://doi.org/10.1002/star.200800008
- Loisel C., Maache-Rezzong Z., Doublier J.P. in: Tomasik P., Yuryev V.P., Bertoft E. (Eds.). Starch, Progress in Structural Studies. Modifications and Applications, Pol. Soc. Food Technol., Malopolska Branch, 2004.
- Yadav R.A., Guha M., Tharananthan N.R., Ramteke S.R. Changes in characteristics of sweet potato flour prepared by different drying techniques. Lebens. Wiss. Technol., 2006, 39: 20–26. https://doi.org/10.1016/j.lwt.2004.12.010
- Shefer A., Shefer S. Novel encapsulation system provides controlled release of ingredients. Food Technol., 2003, 57(11): 40–42.
- Reineccius G. Flavor Chemistry and Technology, Taylor and Francis Group, Boca Raton, FL, USA, 2006.
- Laovachirasuwan P., Peeerapattana J., Srijesdaruk V., Chitropas P., Otsuka M. The physicochemical properties of a spray dried glutinous rice starch biopolymer. Colloids Surf. B, 2010, no. 78: 30–35. https://doi.org/10.1016/j.colsurfb.2010.02.004
- Grabowski J.A., Truong V.D., Daubert C.R. Spray drying of amylase hydrolyzed sweet potato puree and physicochemical properties of powder. J. Food Sci., 2006, 71, Issue 5: 209–217. https://doi.org/10.1111/j.1750-3841.2006.00036.x
- Brummer T., Meuser F., Lengerich B.V., Niemann C. Effect of extrusion cooking on molecular parameters of corn starch. Starch/Starke, 2002, 54, Issue 1: 1–8. https://doi.org/10.1002/1521-379X(200201)54:1<1::AID-STAR1>3.0.CO;2-9
- Vasanthan T., Yeung J., Hoover R. Detrinization of starch in barley flours with thermostable alpha-amylose by extrusion cooking. Starch/Starke, 2001, 53, Issue 12: 616–622. https://doi.org/10.1002/1521-379X(200112)53:12<616::AID-STAR616>3.0.CO;2-M
- Mahasukhonthachat K., Sopade P.A., Gidley M.J. Kinetics of starch digestion and functional properties of twin-screw extruded sorghum. J. Cereal Sci., 2010, 51 (3): 392–401. https://doi.org/10.1016/j.jcs.2010.02.008
- Vermeylen R., Goderis B., Delcour J.A. An X-ray study of hydrothermally treated potato starch. Carbohydr. Polym., 2006, no. 64: 364–375. https://doi.org/10.1016/j.carbpol.2005.12.024
- Kohyama K., Sasaki T. Differential scanning calorimetry and a model calculation of starches annealed at 20 and 50°C. Carbohydr. Polym., 2006, no. 63: 82–88. https://doi.org/10.1016/j.carbpol.2005.08.004
- Nakazawa Y., Wang Y.J. Effect of annealing on starch–palmitic acid interaction. Carbohydr. Polym., 2004, no. 57: 327–335. https://doi.org/10.1016/j.carbpol.2004.05.011
- 8 Atichokudomchai N., Varavinit S., Chinachoti P. A study of annealing and freeze-thaw stability of acid-modified tapioca starch by differential scanning calometry. Starch/ Stаrke, 2002, 54, Issue 8: 343–349.
- Qi X., Tester R.F., Snape C.E., Yuryev V., et al. Molecular basis of the gelatinization and swelling characteristics of waxy barley starches grown in the same location during the same season. Part II. Crystallinity and gelatinization characteristics. J. Cereal Sci., 2004, no. 39: 57–66. https://doi.org/10.1016/S0733-5210(03)00066-3
- Qi X., Tester R.F., Snape C.E., Ansell R. The effect of annealing on structure and gelatinization of maize starches with amylose dosage series. Prog. Food Biopolym. Res., 2005, no. 1: 1–27.
- Shi Y.C. Two- and multi-step annealing of cereal starches in relation to gelatinization. Agric. Food Chem., 2008, 56 (3): 1097–1104. https://doi.org/10.1021/jf072449i
- Hormdok R., Noomhorm A. Hydrothermal treatments of rice starch for improvement of rice noodle quality. Swiss Soc. Food Sci. Technol., 2007, no. 40: 1723–1731.
- Waduge R.N., Hoover R., Vasanthan T., Gao J., Li J. Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Food Res. Int., 2006, no. 39: 59–77. https://doi.org/10.1016/j.foodres.2005.05.008
- Tester R.F., Debon S.J.J. Annealing of starch: A review. Int. J. Biol. Macromol., 2000, 27 (1): 1–12. https://doi.org/10.1016/S0141-8130(99)00121-X
- Jayakody I., Hoover R. Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical sources: A review. Carbohydr. Polym., 2008, no. 74: 691–703. https://doi.org/10.1016/j.carbpol.2008.04.032
- Karlsson M.E., Eliasson A.C. Gelatinization and reetrogradation of potato (Solanum tuberosum)starchin situ as assessed by differential scanning calorimetry (DSC). Swiss Soc. Food Sci. Technol., 2003, no. 36: 735–738.
- Karlsson M.E., Eliasson A.C. Effects of time/temperature treatments on potato (Solanum tuberosum) starch: A comparison of isolated starch and starch in situ. J. Sci. Food Agric., 2003, 83, Issue 15: 1587–1592. https://doi.org/10.1002/jsfa.1583
- Genkina N.K., Noda T., Koltisheva G.I., Wasserman L.A., et al. Effects of growth temperature on some structural properties of crystalline lamellae in starches extracted from sweet potatoes (Sunyred and Ayamurasaki). Starch/Starke, 2004, 55, Issue 8: 350–357.
- Genkina N.K., Wasserman L.A., Yuryev V.P. Annealing of starches from Potato tubers grown at different environmental temperatures. Effect of heating duration. Carbohydr. Polym., 2004, no. 56: 367–370. https://doi.org/10.1016/j.carbpol.2003.12.009
- Kiseleva V.I., Genkina N.K., Tester R.F., Wasserman L.A., et al. Annealing of normal, low and high amylose starches extracted from barley cultivars grown under different environmental conditions. Carbohydr. Polym., 2004, no. 56: 157–168. https://doi.org/10.1016/j.carbpol.2004.01.006
- Kiseleva V.I., Krivandin A.V., Forma J., Blaszczak W., et al. Annealing of normal and mutant wheat starches. LN, SEM, DSC and SAXS studies. Carbohydr. Res., 2005, no. 340: 75–83. https://doi.org/10.1016/j.carres.2004.10.012
- Koroteeva D.A., Kiseleva V.I., Krivandin A.V., Shatalova O.V., et al. Structural and thermodynamic properties of rice starches with different genetic back-ground. Part 2. Defectiveness of different supramolecular structures in starch granules. Int. J. Biol. Macromol., 2007, 41, Issue 5: 534–547. https://doi.org/10.1016/j.ijbiomac.2007.07.005
- Kozlov S.S., Blennow A., Kriandin A.V., Yuryev V.P. Structural and thermodynamic properties of starches extracted from GBSS and GWD supprssed potato lines. Int. J. Biol. Macromol., 2007, 40, Issue 5: 449–460. https://doi.org/10.1016/j.ijbiomac.2006.11.001
- Lin J.-H., Wang S.-W., Chang Y.-H. Effect of molecular size on gelatinization thermal properties before and after annealing of rice starch with different amylose contents. Food Hydrocolloids, 2008, 22, Issue 1: 156–163. https://doi.org/10.1016/j.foodhyd.2007.04.004
- Ozcan S., Jackson D.S. A response surface analysis of commercial corn starch annealing. Cereal Chem., 2003, 80 (2): 241–243. https://doi.org/10.1094/CCHEM.2003.80.2.241
- Tukomane T., Leerapongnum P., Shobsngob S., Varavinit S. Preparation and characterization of annealed enzymatically hydrolyzed tapioca starch and utilization in tableting. Starch/Starke, 2007, 59, Issue 1: 33–45. https://doi.org/10.1002/star.200600524
- Genkina N.K., Wilkman J., Bertoft E., Yuryev V.P. Effects of structural impection on gelatinization characteristics of amylopectin. Starches with A- and B-type crystallinity. Biomacromolecules, 2007, 8 (7): 2329–2335. https://doi.org/10.1021/bm070349f
- Nakazawa Y., Wang Y.J. Acid hydrolysis of native and annealed starches and branched structure of their Naegeli dextrins. Carbohydr. Res., 2003, 338, Issue 24: 2871–2882. https://doi.org/10.1016/j.carres.2003.09.005
- Freitas R.A., Paula R.C., Feitosa J.P.A., Rocha S., Sierakowski M.R. Amylose contents, rheological properties and gelatinization kinetics of yam (Discorea alata) and cassava (Manihot utilisma) starches. Carbohydr. Polym., 2004, no. 55: 3–8. https://doi.org/10.1016/S0144-8617(03)00142-5
- Tester R.F., Ansell R., Snape C.E., Yusuph P. Effect of storage temperatures and annealing conditions on the structure and properties of potato (Solanum tuberosum) starch. Int. J. Biol. Macromol., 2005, 36, Issue 1–2: 1–8. https://doi.org/10.1016/j.ijbiomac.2005.02.008
- Tsutsui K., Katsuta K., Matoba T., Takemasa M., Nishinari K. Effect of annealing temperature on gelatinization of rice starch suspension as studied by rheological and thermal measurements. J. Agric. Food Chem., 2005, 53 (23): 9056–9063. https://doi.org/10.1021/jf051001j
- Adebowale K.O., Afolabi T.A., Olu-Owolabi B.I. Hydrothermal treatment of finger millet (Eleusine coracana) starch. Food Hydrocolloids, 2005, 19, Issue 6: 974–983. https://doi.org/10.1016/j.foodhyd.2004.12.007
- Lawal O.S. Studies on the hydrothermal modifications of new cocoyam (Xanthosoma sagittifolium)starch.Int. J. Biol. Macromol., 2005, 37, Issue 5: 268–277. https://doi.org/10.1016/j.ijbiomac.2005.12.016
- Gunaratne A., Hoover R. Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr. Polym., 2002, no. 49: 425–437. https://doi.org/10.1016/S0144-8617(01)00354-X
- Adebowale K.O., Lawal O.S. Microstructure, physico-chemical properties and retrogradation behavior of mucuna bean (Mucuna pruriens) starch on heat moisture treatments. Food Hydrocolloids, 2003, 17, Issue 3: 265–272. https://doi.org/10.1016/S0268-005X(02)00076-0
- Jiranuntakul W., Puttanlek C., Rungsardthong V., Punchaarnon S. Microstructural and physicochemical properties of heat-moisture treated waxy and normal starches. J. Food Eng., 2011, 104, Issue 2: 246–258. https://doi.org/10.1016/j.jfoodeng.2010.12.016
- Miyazaki M., Morita N. Effect of heat-moisture treated maize starch on the properties of dough and bread. Food Res. Int., 2005, 38, Issue 4: 369–376. https://doi.org/10.1016/j.foodres.2004.10.015
- Olayinka O.O., Adebowale K.O., Olu-Owolabi B.I. Effect of heat-moisture treatment on physicochemical properties of white sorghum starch. Food Hydrocolloids, 2008, 22, Issue 2: 225–230. https://doi.org/10.1016/j.foodhyd.2006.11.004
- Pukkahuta C., Suwannawat B., Shobsngob S., Varavinit S. Comparative study of pasting and thermal transition characteristics of osmotic pressure and heat-moisture treated corn starch. Carbohydr. Polym., 2008, no. 72: 527–536. https://doi.org/10.1016/j.carbpol.2007.09.024
- Watcharatewinkul Y., Puttanlek C., Rungsardthong V., Uttapap D. Pasting properties of heat-moisture treated canna starch in relation to its structural characteristics. Carbohydr. Polym., 2009, no. 75: 505–511. https://doi.org/10.1016/j.carbpol.2008.08.018
- Chung H.J., Lui Q., Hoover R. The impact of heat-moisture treatments on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydr. Polym., 2009, no. 15: 436–447. https://doi.org/10.1016/j.carbpol.2008.08.006
- Chung H.J., Liu Q., Hoover R. Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties and nutritional fractions of pea, lentil and navy bean starches. Food Res. Int., 2010, 43, Issue 2: 501–508. https://doi.org/10.1016/j.foodres.2009.07.030
- Yoenyongbuddhgai S., Noomhorm A. Effect of physicochemical properties of high-amylose Thai rice flours on vermicelli quality. Cereal Chem., 2002, 79, Issue 4: 481–485. https://doi.org/10.1094/CCHEM.2002.79.4.481
- Liu H., Corke H., Ramsden L. The effect of autoclaving on the acetylation of ae, wx and normal maize starches. Starch/Stаrke, 2000, 52, no. 10: 353–360.
- Li Y.Q., Chen Q., Liu X.H., Chen Z.X. Inactivationof soybean lipoxygenase in soymilk by pulsed electric fields. Food Chem., 2008, 109, Issue 2: 408–414. https://doi.org/10.1016/j.foodchem.2008.01.001
- Marselles-Fontanet A.R., Martin-Belloso O. Optimization and validation of PEF processing conditions to inactivate оxidative enzymes of grape juice. J. Food Eng., 2007, 83, Issue 3: 452–462.
- Sampedro F., Rivas A., Rodrigo D., Martinez A., Rodrigo M. Pulsed electric fields inactivation of Lactobacillus plantarum in an orange juice-milk based beverage: Effect of process parameters. J. Food Eng., 2007, 80, Issue 3: 931–938. https://doi.org/10.1016/j.jfoodeng.2006.08.013
- Torregrosa F., Esteve M.D., Frigola A., Cortes C. Ascorbic acid stability during refrigerated storage of orange-carrot juice treated by high pulsed electric field and comparison with pasteurized juice. J. Food Eng., 2006, 73, Issue 4: 339–345. https://doi.org/10.1016/j.jfoodeng.2005.01.034
- Blaszczak W., Valverde S., Fornal J. Effect of high pressure on the structure of potato starch. Carbohydr. Polym., 2005, no. 59: 377–389. https://doi.org/10.1016/j.carbpol.2004.10.008
- Blaszczak W., Fornal J., Kiseleva V.I., Yurgev V.P., et al. Effect of high pressure on thermal, structural and osmotic properties of waxy maize and Hylon VII starch blends. Carbohydr. Polym., 2007, no. 68: 387–396. https://doi.org/10.1016/j.carbpol.2006.12.023
- Wang B., Li D., Wang L.J., Yu L.C., et al. Effect of high pressure homogenization on the structure and thermal properties of maize starch. J. Food Eng., 2008, 87, Issue 3: 436–444. https://doi.org/10.1016/j.jfoodeng.2007.12.027
- Czechowska-Biskup R., Rokita B., Lotfy S., Ulanski P., Rosiak J.M. Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydr. Polym., 2005, no. 60: 175–184. https://doi.org/10.1016/j.carbpol.2004.12.001
- Iida Y., Tuziuti T., Yasui K., Towatu A., Kozuka T. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Inn. Food Sci. Emerg. Technol., 2008, 9, Issue 2: 140–146. https://doi.org/10.1016/j.ifset.2007.03.029
- Liu H., Bao J., Du Y., Zhou X., Kennedy J.F. Effect of ultrasonic treatment on the biochemophysical properties of chitosan. Carbohydr. Polym., 2006, no. 64: 553–559. https://doi.org/10.1016/j.carbpol.2005.11.007
- Margulis M.A., Margulis I.M. Calorimetric method for measurement of acoustic power absorbed in a volume of a liquid. Ultrasonic Sonochem., 2003, 10: 343–345. https://doi.org/10.1016/S1350-4177(03)00100-7
- Han Z., Zeng X., Zhang B., Yu S. Effects of pulsed electric fields (PEF) treatment on the properties of corn starch. J. Food Eng., 2009, 93, Issue 3: 318–323. https://doi.org/10.1016/j.jfoodeng.2009.01.040
- Kaasova J., Hubackova B., Kadlec P., Prihoda J., Bubnik Z. Chemical and biochemical changes during microwave treatment of wheat. Czech. J. Food Sci., 2002, 20, no. 2: 74–78. https://doi.org/10.17221/3513-CJFS
- Nasehi B., Javaheri S. Application of high pressure in modifying functional properties of starches: A review. Middle-East J. Sci. Res., 2012, 11 (7): 856–861.
- Vallons K.J.R., Arendt E.K. Effects of high pressure and temperature on the structure and rheological properties of sorghum starch. Innov. Food Sci. Emerg. Technol., 2009, 10, Issue 4: 449–456. https://doi.org/10.1016/j.ifset.2009.06.008
- Vallons K.J.R., Arendt E.K. Understanding high pressure-induced changes in wheat flour-water suspensions using starch–gluten mixtures as model systems. Food Res. Int., 2010, 43, Issue 3: 893–901. https://doi.org/10.1016/j.foodres.2009.12.010
- Bauer B.A., Wiehle T., Knorr D. Impact of high hydrostatic pressure treatment on the resistant starch content of wheat starch. Starch/Starke, 2005, 57, Issue 3–4: 124–133. https://doi.org/10.1002/star.200400334
- Kawai K., Fukami K., Yamamoto K. Effects of pressure treatment, holding time and starch content on gelatinization and retrogradation properties of potato starch–water mixtures treated with high hydrostatic pressure. Carbohydr. Polym., 2007, no. 69: 590–596. https://doi.org/10.1016/j.carbpol.2007.01.015
- Oh H.E., Pinder D.N., Hemar Y., Anema S.G., Wong M. Effect of high-pressure treatment on various starch – in – water suspensions. Food Hydrocolloids, 2008, 22, Issue 1: 150–155. https://doi.org/10.1016/j.foodhyd.2007.01.028
- Oh H.E., Anema S.G., Pinder D.N., Wong M. Effects of different components in skim milk on high-pressure-induced gelatinization of waxy rice starch and normal rice starch. Food Chem., 2009, 113, Issue 1: 1–8. https://doi.org/10.1016/j.foodchem.2008.07.107
- Simonin H., Guyon C., Orlowska M., De Lamballerie M., Le-Bail A. Gelatinization of waxy starches under high pressure as influenced by pH and osmolarity: Gelatinization kinetics, final structure and pasting properties. LWT-Food Sci. Technol., 2011, 44, Issue 3: 779–786.
- Yaldagard M., Mortazavi S.A., Tabatabaie F. The principles of ultra HP treatment and its applications in food processing/preservation: A review of microbiological and quality aspects. Afr. J. Biotechnol., 2008, 7, no. 16: 2739– 2767.
- Pukkahuta C., Shobsngob S., Varavinit S. Effect of osmotic pressure on starch: new method of physical modification of starch. Starch/Starke, 2007, 59, Issue 2: 78–90. https://doi.org/10.1002/star.200600509
- Stolt M., Oinonen S., Autio K. Effect of high pressure on the physical properties of barley starch. Innov. Food Sci. Emerg. Technol., 2001, 1, Issue 3: 167–175.
- Blaszczak W., Fornal J., Valverder S., Garrido L. Pressure-induced changes in the structure of corn starches with different amylose content. Carbohydr. Polym., 2005, no. 61: 132–140. https://doi.org/10.1016/j.carbpol.2005.04.005
- Stute R., Klingler R.W., Boguslawski S., Eshtiaghi M.N., Knorr D. Effect of high pressure treatment on starches. Starch/Starke, 1996, 48, Issue 11–12: 399–408. https://doi.org/10.1002/star.19960481104
- Jambrak A.R., Herceg Z., Subaric D., Babic J., et al. Ultrasound effect on physical properties of corn starch. Carbohydr. Polym., 2010, no. 79: 91–100. https://doi.org/10.1016/j.carbpol.2009.07.051
- Jeyamkondan S., Jayas D.S., Holley R.A. Pulsed electric field processing of foods: A review. J. Food Protect., 1999, 62, Issue 9: 1088–1096. https://doi.org/10.4315/0362-028X-62.9.1088
Надійшла до редакції 23 січня 2019 р.