2019 (2) 7
Structural features and porosity of the POSS-containing nanocomposites based on polyurethane-poly(hydroxypropyl methacrylate) matrix, which is formed by the principle of sequential IPNs
L.V. Karabanova1, L.A. Honcharova1, V.I. Sapsay2, D.O. Klymchuk2
1Institute of Macromolecular Chemistry NAS of Ukraine
48, Kharkivske shose, Kyiv, 02160, Ukraine
2N.G. Kholodny Institute of Botany NAS of Ukraine
2, Tereshchenkivs’ka str., Kyiv, 01004, Ukraine
Polym. J., 2019, 41, no. 2: 101-108
Section: Synthesis of polymers.
Language: Ukrainian.
Abstract:
POSS-containing nanocomposites based on a multicomponent polymer matrix consisting of polyurethane (PU) and poly(hydroxypropyl methacrylate) (PHPMA), and 1,2-propanediolisobutyl polyhedral oligomeric silsesquioxanes (POSS), used as functionalized nanofiller, were synthesized. The porosity of created nanocomposites by adsorption of inert solvent vapor and morphology by scanning electron microscopy were studied. It was shown that nanofiller, introduced into the semi-IPN at the stage of polyurethane synthesis, plays the role of a nanostructuring agent in the system. As a result, the nanocomposites with more ordered structure are formed, which leads to obtaining of materials with improved physical and mechanical properties. By study the porosity was shown that POSS-containing nanocomposites based on polyurethane-poly(hydroxypropyl methacrylate) semi-IPNs are the materials with dense structure and transitional pores with size of 50 to 60 A and could be used as gas barrier membranes.
Keywords: nanocomposites, polyurethane, 1,2-propanediol isobutyl-POSS, semi-IPN, porosity, morphology.
References
- Ray S.S., Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci., 2003, 28: 1539-1561. https://doi.org/10.1016/j.progpolymsci.2003.08.002
- Shaffer M.S.P., Sandler J.K.W. Processing and properties of nanocomposites. Carbon Nanotube/Nanofibre Polymer Composites, Singapore: World Scientific, 2006: 1-59. ISBN 978-981-270-390-3. https://doi.org/10.1142/9789812772473_0001
- Bershtein V.A., Gun’ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A.A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. RSC Adv., 2013, 3: 14560-14570. https://doi.org/10.1039/c3ra40295a
- Karabanova L.V., Bershtein V.A., Sukhanova T.E., Yakushev P.N., Egorova L.M., Lutsyk E.D., Svyatyna A.V., Vylegzhanina M.E. 3D diamond-containing nanocomposites based on hybrid polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPNs: Composition-nanostructure-segmental dynamics-elastic properties relationships. J. Pol. Sci. B, 2008, 46: 1696-1712. https://doi.org/10.1002/polb.21506
- Moniruzzaman M., Winey K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules, 2006, 39: 5194-5205. https://doi.org/10.1021/ma060733p
- Wolinska-Grabczyk A., Jankowski A. Gas transport properties of segmented polyurethanes varying in the kind of soft segments. Sep. Pur. Tech., 2007, 57: 413-417. https://doi.org/10.1016/j.seppur.2006.03.025
- Gumenna M.A., Shevchuk A.V., Klimenko N.S., Shevchenko V.V. Polyurethanes on the base of polyhedral oligosilsesquioxanes (POSS). Polym. J. (Ukr.), 2007, 29: 177-185.
- Karabanova L.V., Whitby R.L.D., Bershtein V.A., Korobeinyk A.V., Yakushev P.N., Bondaruk O.M., Lloyd A.W., Mikhalovsky S.V. The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multi-walled carbon nanotube composites with low filler content. Colloid Polym. Sci., 2013, 291: 573-583. https://doi.org/10.1007/s00396-012-2745-4
- Karabanova L.V., Whitby R.L.D., Korobeinyk A., Bondaruk O., Salvage J.P., Lloyd A.W., Mikhalovsky S.V. Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Comp. Sci. Tech., 2012, 72: 865-872. https://doi.org/10.1016/j.compscitech.2012.02.008
- Madhavan K., Reddy B.S.R. Structure-gas transport property relationships of poly(dimethylsiloxane-urethane) nanocomposite membranes. J. Mem. Sci., 2009, 342: 291-299. https://doi.org/10.1016/j.memsci.2009.07.002
- Fomenko A.A., Gomza Yu.P., Klepko V.V., Gumenna M.A., Klimenko N.S., Shevchenko V.V. Dielectric properties, conductivity and structure of urethane composites based on polyethylene glycol and polyhedral silsesquioxane. Polym. J. (Ukr.), 2009, 31, no. 2: 137-143.
- Mahapatra S.S., Yadav S.K., Cho J.W. Nanostructured hyperbranched polyurethane elastomer hybrids that incorporate polyhedral oligosilsesquioxane. React. Funct. Polym., 2012, 72: 227-232. https://doi.org/10.1016/j.reactfunctpolym.2012.02.001
- Lewicki J.P., Pielichowski K., Jancia M., Hebda E., Albo R.L.F., Maxwell R.S. Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polym. Degrad. Stab., 2014, 104: 50-56. https://doi.org/10.1016/j.polymdegradstab.2014.03.025
- Wei K., Wang L., Zheng S. Organic-inorganic polyurethanes with 3, 13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polym. Chem., 2013, 4: 1491-1501. https://doi.org/10.1039/C2PY20930F
- Bourbigot S., Turf T., Bellayer S., Duquesne S. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym. Degrad. Stab., 2009, 94: 1230-1237. https://doi.org/10.1016/j.polymdegradstab.2009.04.016
- Huang J., Jiang P., Li X., Huang Y. Synthesis and characterization of sustainable polyurethane based on epoxy soybean oil and modified by double-decker silsesquioxane. J. Mater. Sci., 2016, 51: 2443-2452. https://doi.org/10.1007/s10853-015-9557-0
- Karabanova L.V., Honcharova L.A., Sapsay V.I., Klymchuk D.O. Synthesis, morphology and thermal properties of the POSS-containing polyurethane nanocomposites. Chem. Phys. Tech. Surf., 2016, 7: 413-420.
- Wang W., Guo Y., Otaigbe J.U. The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites. Polymer, 2009, 50: 5749-5757. https://doi.org/10.1016/j.polymer.2009.05.037
- Lai Y.S., Tsai C.W., Yang H.W., Wang G.P., Wu K.H. Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Mat. Chem. Phys., 2009, 117: 91-98. https://doi.org/10.1016/j.matchemphys.2009.05.006
- Huitron-Rattinger E., Ishida K., Romo-Uribe A., Mather P.T. Thermally modulated nanostructure of poly(ε-caprolactone)-POSS multiblock thermoplastic polyurethanes. Polymer, 2013, 54: 3350-3362. https://doi.org/10.1016/j.polymer.2013.04.015
- Lipatov Y.S. Polymer reinforcement. Toronto: ChemTec. Publishing, 1995: 406. ISBN 1-895198-08-9.
- Lipatov Y.S., Karabanova L.V. Gradient interpenetrating polymer networks. In book: Advances in interpenetrating polymer networks. D. Klempner, K.C. Frish (Eds), vol.4, Lancaster: Techomic, 1994: 191-212. ISBN 0-877627-08-8.
- Karabanova L.V., Sergeeva L.M., Boiteux G. Filler effect on formation and properties of reinforced interpenetrating polymer networks. Composite Interfaces, 2001, 8: 207-219. https://doi.org/10.1163/15685540152594677
- Karabanova L.V., Gomza Yu.P., Nesin S.D., Bondaruk O.M., Voronin E.P., Nosach L.V. Nanocomposites based on multicomponent polymer matrices and nanofiller densil for biomedical application. In book: Nanophysics, Nanophotonics, Surface Studies and Application. O. Fesenko, L. Yatsenko (Eds), Switzerland: Springer, 2016: 451-475. ISBN 978-3-319-30736-7. https://doi.org/10.1007/978-3-319-30737-4_38
- Bershtein V.A., Gun’ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A.A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. RSC Advances, 2013, 3: 14560-14570. https://doi.org/10.1039/c3ra40295a
- Karabanova L.V., Bershtein V.A., Gomza Yu.P., Kirilenko D.A., Nesin S.D., Yakushev P.N. Nanostructure, dynamics, and mechanical properties of nanocomposites based on polyurethane-poly(2-hydroxyethyl methacrylate) semi-interpenetrating polymer network with ultralow MWCNT contents. Polym. Composites, 2018, 39: 263-273. https://doi.org/10.1002/pc.23926
- Karabanova L.V., Bershtein V.A., Sukhanova T.E., Yakushev P.N., Egorova L.M., Svyatyna A., Vylegzhanina M.E. 3-D diamond-containing nanocomposites based on hybrid polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPNs: composition – nanostructure-segmental dynamics – elastic properties relationships. J. Polym. Sci. B Phys, 2008, 46, no. 16: 1696-1712. https://doi.org/10.1002/polb.21506
- Karabanova L.V., Honcharova L.A., Sapsay V.I., Klymchuk D.O. Synthesis, morphology and thermal properties of the POSS-containing polyurethane nanocomposites. Chem. Phys. Tech. Surf., 2016, 7, no. 4: 413-420.
- Karabanova L.V., Honcharova L.A., Babkina N.V., Sapsay V.I., Klymchuk D.O. POSS-containing nanocomposites based on polyurethane/poly(hydroxypropyl methacrylate) polymer matrix: dynamic mechanical properties and morphology. Polym. Testing, 2018, 69: 556-562. https://doi.org/10.1016/j.polymertesting.2018.06.012
- Tager A.A. Phiziko-chimiya polimerov. M.: Nauchniy mir, 2007: 576 [In Russian]. ISBN 978-589-176-437-8.
- Karabanova L.V., Gorbach L.A., Skiba S.I. Termodinamicheskoye issledovaniye vzaimodejstvij v napolnennyh vzaimopronikayushchih setkah. Kompozitsionnye polimernye materialy (Ukr.), 1991, 49: 35-39 [in Russian].
- Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60, no. 2: 309-319. https://doi.org/10.1021/ja01269a023
- Greg S., Sing K. Adsorbtsiya, udelnaya poverhnost, poristost. M.: Mir, 1970: 408 [in Russian].
- Dubinin M.M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev., 1960, 60, no. 2: 235-241. https://doi.org/10.1021/cr60204a006