2019 (4) 4

Degradable properties of compositions based on polyethylene and plasticized polyvinyl alcohol

 

T.V. Dmytriieva, S.K. Krymovska, V.I. Bortnytskyi, S.M. Kobylinskyi, S.V. Riabov

 

Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2019, 41, no. 4: 246-252.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

In the present paper the degradation of polyethylene (PE) compositions with additives of 1–5 wt % polyvinyl alcohol (PVA) plasticized with modified rape (MRo) or soybean oil (MSo) was studied. The degradability of obtained composites was evaluated by changes in physico-mechanical characteristics which take place under the influence of UV irradiation and biological factors of the soil during 120 days. It was found that the initial tensile strength of compositions with additives of plasticized polyvinyl alcohol is increased compared with the pure PE by 50–77 % (11,10–13,10 MPa). Meanwhile, after the UV exposure due to the passage of degradation processes, tensile strength was significantly reduced (up to 2–3 MPa). The action of biological soil factors has a little effect on physico-mechanical characteristics, as the result the tensile strength of the samples is reduced by only 15–24 %. The loss of elongation was similarly influenced by UV irradiation and decreased up to 90 % of the original value, which was within 40–80 %. The pyrolysis mass spectrometry was also used to describe the processes which occur during sample aging. It is shown that the functional additives based on plasticized PVA induce the structural transformations were assessed by the change of quantity and intensity of ion fragments. For instance, the intensity of ion fragments for PE-MSo decreased by 7–96 % after the UV exposure and 9–42 % after the aging of composite in the soil.

 

Keywords: degradability, polyethylene, polyvinyl alcohol, pyrolysis mass spectrometry.

References

  1. Marketolohi informuiut, Upakovka, 2018, 1:16 – 18.
  2. Hoffman T., Reznickova I., Kozakova T. Assessing biodegradability of plastics based on poly (vinyl alcohol) and protein wastes, Polym. Degrad. аnd Stab., 2003, 79, 3:511-519. https://doi.org/10.1016/S0141-3910(02)00367-1
  3. Ke T., Sun X.S. Starch, polylactic acid, and polyvinyl alcohol blends, J. of Polymers and the Environment, 2003, 11, 1:7-14.
  4. Mohsin M., Hossin A., Haik Y. Thermomechanical properties of poly(vinyl alcohol) plasticized with varying ratios of sorbitol, Materials Sci. and Engineering: A, 2011, 528, 3:925-930. https://doi.org/10.1016/j.msea.2010.09.100
  5. Cinelli P., Chiellini E., Lanton J.W., Jmam S.H. Foamed articles based on potato starch, corn fibers and polyvinyl alcohol, Polym. Degrad. and Stab., 2006, 91:1147-1155. https://doi.org/10.1016/j.polymdegradstab.2005.07.001
  6. Chevillard, A., Angellier-Coussy H., Cuq B., Guillard V., Cesar G., Gontard N., Gastaldi E. How the biodegradability of wheat gluten based agromaterial can be modulated by adding nanoclays, Polym. Degrad. And Stab., 2011, 12:2088-2097. https://doi.org/10.1016/j.polymdegradstab.2011.09.024
  7. Fukusima K., Gimenez E., Cabedo L., Lagaron J., Feijoo J. Biotic degradation of poly(dl-lactide) based nanocomposites, Polym. Degrad. and Stab., 2012, 97, 8:1278-1284. https://doi.org/10.1016/j.polymdegradstab.2012.05.029
  8. Santhoskumar A.U., Devarajan S., Palanivelu K., Ivo Romauld S. A New additive formulation to improve biodegradation of low density polyethylene, Int. J. of Chem. Tech. Research, 2014, 6, 9:4194-4200.
  9. Abrusci C., Pablos J., Marin I., Espi E., Corrales T., Catalina F. Comparative effect of metal stearates as pro-oxidant additives on bacterial biodegradation of thermal – and photo-degraded low density polyethylene mulching films, International Biodeterioration Biodegradation, 2013, 83:25-32. https://doi.org/10.1016/j.ibiod.2013.04.002
  10. Jeong J., Kim Nam M. Degradation of linear low density polyethylene exposed to UV – irradiation, Europ. Polym. J, 2014, 52:146-153. https://doi.org/10.1016/j.eurpolymj.2014.01.007
  11. Dmitrieva T.V., Kobylinskyi S.M., Boiko V.V., Riabov S.V., Krymovska S.K., Vplyv metalokompleksiv na osnovi pektynu na degradabelnist polietylenu [The influence of pectin based metal-complexes on degradation of polyethylene], Polimernyi Zhurnal, 2015, 37, 3:263-268. (In Ukrainian). https://doi.org/10.15407/polymerj.37.03.263
  12. Kobylinskiy S.M., Dmytrieva T.V., Riabov S.V., Bortnytsky V.I., Krymovska S.K., Kercha Yu.Yu. Vplyv metalokompleksiv khitozanu na degradabelni vlastyvosti polietylenu [An influence chitosan’s metal-complex on degradation properties of polyethylene], Ukrainskyi Khimichnyi Zhurnal, 2014, 11:52-55 (In Ukrainian).
  13. Dmitrieva T.V., Bortnytskyi V.I., Riabov S.V., Kobylinskyi S.M., Krymovska S.K. Vplyv pryrodovidnovliuvanykh funktsionalnykh dobavok na osnovi roslynnykh oliy na degradabelnist polietylenu [The influence of renewable functional additives based on vegetable oil on the destruction of polyethylene], Polymernyi Zhurnal, 2017, 39, 3:183-187 (In Ukrainian). https://doi.org/10.15407/polymerj.39.03.183
  14. Zamotayev P.V. Polimery s pristavkoy BIO [Polymers with a prefix BIO]. Upakovka, 2018, 1:25-29 (in Russian).
  15. Knitter M., Dobzhinska-Mizera M. Mekhanicheskiie svoystva izotakticheskogo polipropilena, modifitsirovanogo termoplastichnym kartophelnym krakhmalom [Mekhanical properties of isotactic polypropylene dodified by potatoes starch]. Mekhanika kompozitnykh materialov, 2015, 51, 2:349-360 (in Russian). https://doi.org/10.1007/s11029-015-9496-5
  16. Kercha Yu.Yu., Laptii S.V., Yakovenko O.H., Koptseva L.A. Rozrobka kompozytsii iz vykorystanniam syrovyny iz vidnovliuvanykh dzherel [Development of compositions with use of raw from renewable sources]. Kompozytsiini polimerni materialy, 1999, 21, 1:51-53 (in Ukrainian).
  17. Galikhanov M.F., Minnakhmetova A.K., Zhygayeva I.A., Deberdeev R.Ya. Vliyanie electretnogo zariada kompozitsiy polietilena s krakhmalom na ikh biorazlagaemost [Effect of the electret charge of polyethylene-starch composites on their biodegradability]. Plasticheskie massy, 2009, 8:41-44 (in Russian). International polymer science and technology, 2009, 37, 11:59-64. https://doi.org/10.1177/0307174X1003701109
  18. Beslaneeva Z.L., Sherieva M.L., Mashukov N.I., Shustov G.B. Biodestruktsiya polietilenovykh kompozitov na osnove krakhmala i ultradispersnykh metallicheskikh chastits [Biodegradation of polyethylene composites based on starch and ultra-disperse metal particles]. Plasticheskie massy, 2010, 11:59-61. (in Russian). International polymer science and technology, 2010, 38, 11:55-57. https://doi.org/10.1177/0307174X1103801111
  19. Yermolovich O.A., Ekologicheski bezopasnye polimernye materialy [Environmentally friendly polymeric materials]. Kompozitnye materialy, 2007, 1:20-30 (in Russian).
  20. Ukhartseva I.Yu. Samodestruktiruyemye polimernye materialy [Self-degradable polymeric material] Plasticheskie massy, 2009, 6:45-48. (in Russian). International polymer science and technology, 37, 9:59-62. https://doi.org/10.1177/0307174X1003700913
  21. Zamotayev O bednom pakete zamolvite slovo [About a package, say a word]. Upakovka, 2018, 2:4-8. (in Russian).
  22. Korchagin V. I., Protasov A. V., Melnova M. S., Zhan S. L., Cherkasova T. Yu. Morfologiya importnykh dobavok, ispolzuemykh pri poluchenii oksobiorazlagaemykh poliolefinov [Morphology of import additives used in obtaining oxobio-degradable polyolefins]. Vestnik VGUIT [Proceedings of VSUET]. 2017, 1:227-231 (in Russian). https://doi.org/10.20914/2310-1202-2017-1-227-231